
Swinburne University of Technology
Faculty of Science, Engineering and Technology

Final Year Research Project 2
Semester 2, 2018

Project Title: SILO: The Hardware Granular Synthesizer

Group No.: 29

Assessment: Research Report

Supervisor: Jagdish Patra

Date of Submission: 29 October 2018

Student Name ID Unit Code Course
Timothy Opie 101046047 EEE40012 BH-EEE

EEE40012: Final Year Research Project 2

SILO
The Hardware Granular Synthesizer

Semester 2 Research Report

October 29, 2018

Author: Timothy Opie

Student Number: 101046047

Supervisor: Jagdish Patra

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 2 of 84

TABLE OF CONTENTS

1. Abstract 5
1.1 Problem Statement 5
1.2 Research Question 6

2. Introduction and Literature Review 7
2.1 Granular Synthesis 7
2.2 Software Granular Synthesis 8
2.3 Hardware Granular Synthesis 10
2.4 Hardware Options 12
2.5 Algorithms 13
2.6 Conclusion of the Literary Review 13

3. Methodology 14
3.1 Requirements with Checklist 14
3.2 Functionality with Checklist 15
3.3 Testing and Quality Assurance Plan 16
3.4 Hardware for Project 16
3.5 Budget 18
3.6 Schedule 19

4. Implementation of Design 20
4.1 Overall Design 20
4.2 Terminology 22
4.3 Detailed Design 24
4.4 Storing on QuadSPI 37

5. Results 38

6. Further Discussion 42
6.1 Timing Issues 42
6.2 Analog to Digital Conversion Issues: 43
6.3 Discussion of Results 43
6.4 Future Prospects 44

7. Conclusion 45

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 3 of 84

8. Source Code and Reports 46
silo.vhd 46
pitchshift.vhd 53
clock_generator.vhd 55
envelope.vhd 57
density.vhd 60
rnd.vhd 62
constraints.xdc 64
Xilinx Vivado Utilisation Report 66
Xilinx Vivado Synthesis Report 70

9. References 83

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 4 of 84

1. Abstract
This report outlines the completion of the project: SILO The Hardware Granular Synthesizer.
Within this report, I will examine the thesis proposed and discuss the current literature. I will
then discuss the methodology. Next, I will discuss the design of this project, examining how
the design was implemented. I will then present the verification of the implementation and
discuss the outcome. Finally, I will discuss future plans and conclude.

Please note that the problem and the literature review have not changed significantly since
last semester, although I feel they are much clearer now, and I felt it was important to include
them in my report.

1.1 Problem Statement

Element Description

New sounds, new
interfaces

As with many disciplines, the artist is always seeking creative
inspiration, something that will spark a new creative idea.
New sounds and new ways to control sound are two ways of
accomplishing this.

Synthesis difficulty This synthesis method has always been difficult to access, because
the strain it puts on computer systems meant that for most users it
was not even an option until the 2000s, despite being a concept
from the 1940s.

Lack of hardware options Currently there is not a hardware granular synthesizer available on
the market. All implementations are software based. Two hardware
modules were available for a very limited time, but were both
discontinued due to design problems.

Reliability in Live
performance

Software based synthesis is acceptable for composition purposes
and in studio sound design, but in a live performance setting,
stability and reliability are significantly more important.

Benefits of a solution A complete hardware solution would mitigate most of the
problems inherent in software solutions.

Hardware capability In software the solution is already extremely good, so why then is
it not available in hardware, when all other synthesis methods have
many hardware implementations? Is it too hard to solve with
hardware, or is it just that very few people have both the skills and
musical knowledge to implement it?

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 5 of 84

1.2 Research Question

Can a hardware granular synthesizer be built that matches the functionality of a software
implementation?

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 6 of 84

2. Introduction and Literature Review

This chapter covers the literature and research that already exists in this field. This was
already covered in the proposal, however some new additions have been made that are quite
pertinent to the outcome of the project.

2.1 Granular Synthesis

Granular synthesis is a sound synthesis technique used in musical performance and musical
composition by which sonic textures are created by distributing thousands of tiny “grains” of
sound over time. These sonic grain can either be created or derived from another sound
source. Each grain is windowed into a 21ms slice of audio that is encapsulated by an
amplitude varying envelope that ensures each grain starts and ends at 0.0 amplitude. Each
grain is created separately with individual properties and then layered across time with
thousands of other sonic grains to create the sonic textures. The textures are influenced by the
density and synchronicity of grains, the spread of the grains, and the pitch, amplitude, and
length of each individual grain. On their own, they are barely audible, but as a large group,
they afford atomic building blocks for creating new sounds, and new experiences with audio.

Figure 1: Diagram of how granular synthesis creates sonic textures

Granular synthesis was derived from Dennis Gabor’s theory of communication in 1947 [1]
where he proposed reducing communication signals to a series elementary acoustical quanta.
Each quantum a windowed sonic event no longer than 21 milliseconds he referred to as a
logon. The logons were to be transmitted and later reassembled, in an effort to reduce
telephone bandwidth. Unfortunately, Gabor failed to create a machine with enough fidelity to
reproduce the original signal with any clarity, despite multiple attempts.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 7 of 84

Figure 2: A diagram by Dennis Gabor of the theorised logons both separate, and summed[1].

In the late 1950s, the architect and composer Iannis Xenakis experimented with Gabor’s
theory with musical intention. Xenakis referred to the logons, with the term Gabor grain,
which was later shortened to grain. Xenakis expanded on the theory, putting emphasis on the
musical properties of the process. In 1958 he created a musical work entitled “Concret PH”.
In 1959 he created the musical work entitled “Analogique A et B”. He created no more
musical works using this method as they had been constructed using tape-splicing techniques
and took many months to complete. He published an expansion and discussion on this theory
in his 1971 book entitled “Formalized Music”. [2]

2.2 Software Granular Synthesis

In 1972 Xenakis gave a guest lecture discussing the Gabor Grain, inspiring electronic
composer and researcher Curtis Roads to implement this concept digitally. Using the
program MUSIC V written by Max Matthews, running on a Burroughs B6700 mainframe
computer at his university, he designed a composition technique in which each punch card
represented a single audio grain. He created large stacks of cards which the computer would
render into audio each weekend, initially conducting small sonic experiments, and eventually
creating the musical work NSCOR which Roads slowly modified and perfected over a 10
year period. [3]

In the late 1970s, Dr. Barry Truax stated this method was far too cumbersome and set about
creating a real-time granular synthesis process. He created a system called PodX which
utilised a DMX-1000 Digital Signal Processor controlled by a DEC LSI-11/23 mini-computer
[4]. This system still is still operable by appointment. It involves using the keyboard as a

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 8 of 84

controller for adjusting the output of the DMX-1000. Hotkeys have been assigned that control
each element of granular synthesis. It is not portable and not used in live performance as it
can only handle small amounts of data at a time. Truax overcomes this by recording and
layering multiple channels in his studio to achieve the rich sound associated with his
compositions. [23]

The CSound language developed by Barry Vercoe in 1985 enabled microcomputers to create
rudimentary grains using a method similar to Curtis Roads. In 1994 Paris Smaragdis and John
ffitch added the first complete grain OPCODE to CSound. It gave composers much more
control and fidelity, however required them to set 23 parameters per grain. This is the version
I first used in 1999. CSound is still an active project, and was included in the one laptop per
child project.

In 1995 Curtis Roads created a free granular synthesis program for the Macintosh Classic OS
called Cloud Generator that allowed the user to record short sound samples, granulate them,
and disperse the grains using a number of different patterns. This was a non-real-time
implementation that relied on visualisation to create sound. [24]

Figure 3: Screenshots from Cloud Generator.
It displays each grain as a circle, on a frequency vs time graph [24].

In the early 2000s as home computers became powerful enough to handle this technique,
audio plugins and software implementations appeared, although in real-time mode they were
unstable, and would crash regularly [10]. Now many software environments, and digital
audio workstations, such as Ableton Live, can implement this synthesis technique much more
reliably. It has however always been software based, which carries certain inherent risks in
live performance.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 9 of 84

2.3 Hardware Granular Synthesis

Two companies have attempted hardware implementations of granular synthesis, or at least
granular synthesis adjacent devices, with poor results. Another company recently started a
campaign on kickstarter, promoting a granular synthesis hardware device, however when I
investigated it I found it was a Raspberry Pi hidden in a box, running software on Raspbian
[31]. Having experimented with granular synthesis on a Raspberry Pi, I know this device will
be quite limited, despite having a nice interface, plus it is not hardware based. The two
hardware devices will be discussed now.

The Phonogene (retired) by the Make Noise Company. Designed as a digital tape
manipulation tool for Musique Concrete composition . It can handle micromontage which is1 2

similar, although much simpler to implement than granulars synthesis, and sounds quite
different [21]. The actual sonic results from this device are very noisy and of low fidelity. It
can only handle a couple of seconds of audio, and it clips every sample it plays, resulting in a
lot of ticking sounds, due to a lack of amplitude enveloping.

Figure 4: The physical interface for the Phonogene.

2 Micromontage involves splicing audio tape into 100ms to 1sec segments and rearranging the segments.

1 Musique Concrete is a composition technique developed by Pierre Schaeffer in 1948 that uses only found
sound (recorded sound) as the source material, and relies on audio tape manipulation techniques to create
musical works.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 10 of 84

Clouds (retired) by Mutable Instruments. The name is a nod to Curtis Roads’ early
graphically controlled program. Only 250 were manufactured, as the designer, Olivier Gillet
found it too problematic. The source code is online under the BSD license, written for an
F4xx 32-bit ARM-based microcontroller. It only contains some functionality of granular
synthesis [22]. Being ARM-based is most likely the reason it does not run well, as the device
is much less powerful than most computers used for music production. I have not heard or
seen this device in action as it is so rare, but having experimented with granular synthesis on
low powered devices in the past I can deduce why Gillet found it too problematic.

Figure 5: The physical interface for the Clouds texture synthesizer.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 11 of 84

2.4 Hardware Options

Although granular synthesis hardware designs are non-existent, other synthesis methods are
plentiful in hardware. Numerous outlets sell FM synthesizers, subtractive and additive
synthesizers, formant synthesizers, and digital samplers. It is not due to unpopularity with
granular synthesis that appropriate devices do not exist, because it is popular. Famous artists
such Daft Punk, Nine Inch Nails, Aphex Twin, Autechre, and Fat Boy Slim use granular
synthesis in their music [10][26].

There are two paths that could provide a solution to hardware granular synthesis. The system
could be built with a microcontroller (MCU) or a Field Programmable Gate Array (FPGA).

An MCU is much easier to work with, because it can be programmed in C, and is almost a
purpose built computer. However The Mutable Instruments Clouds hardware interface was
created on an MCU and they abandoned it because it could not perform very well. This is
most likely because an MCU runs all operations sequentially, loading and running one line of
code at a time, plus MCUs are low powered computers, designed to provide low power
solutions and portability, but not provide grunt. The MCU option as basically a low powered
dedicated software implementation.

An FPGA is significantly harder to program, but the throughput can be optimised to allow
tremendous amounts of data to flow simultaneously. This is because an FPGA supports
parallelism. A sequence that might require 10 sequential operations on an MCU, might be
accomplished in a single clock cycle on an FPGA. A process like granular synthesis that
requires 23 parameters to be applied to a tiny audio sample could potentially be optimised to
perform all operation in just a few clock cycles [20]. Potentially you could generate very
dense granular structures in real time, that are not possible on a sequential system.

Although there are no FPGA based granular synthesis projects, there are numerous DSP
projects and other synthesizer implementations running on FPGA. Some recent articles on
FPGA programming include FFT implementations [14] and wavetable synthesis [15].
Students from MIT created a basic synthesizer on an FPGA. It was square wave based, but
included some rudimentary DSP effects to help shape the sound. One particularly insightful
article on wavetable synthesis for FPGA discusses how to store waveforms in memory and3

play them back at different speeds to create a multiple pitched device [15].

There are also numerous books and manuals on FPGA programming that cover many facets
related to behavioural design, tips, and examples for effective electronic design [17][18][19].

3 Wavetable synthesis was one of the earliest forms of digital synthesis, used before FM synthesis was invented.
It stores wave data in an array that can be quickly called and applied.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 12 of 84

2.5 Algorithms
Pitch Shifting is an important attribute of granular synthesis. Pitch shifting can be achieved
by performing an FFT on the audio, manipulating the bins, and then performing an inverse
FFT [32]. This process however requires collecting a large buffer of audio to analyse and
then produce high quality audio, resulting in significant lag, which is problematic for
musicians performing in real-time. There are other forms of pitch shifting using filters and
offsets, however the application is for low fidelity analog implementations [27]. Another
form of pitch shifting can be performed by manipulating the sample rate [33]. This generally
involves adjusting out outgoing sample rate, although it could be accomplished by adjusting
the incoming sample rate if you have good control of the analog to digital converter.

2.6 Conclusion of the Literary Review
Many decisions were made based on the literature, as will be discussed in the following
chapters.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 13 of 84

3. Methodology
This section will discuss the requirements, functionality, testing/quality assurance procedures,
hardware that was used, and the schedule.

In summary, I required a proper hardware implementation, so it needed to be implemented
on an FPGA using VHDL.

I have some experience working with VHDL, so despite being difficult, it is something I
already understood to some degree. Ultimately I would like to create a granular synthesis
integrated circuit design on an ASIC, so although that is well beyond the scope of this
project, working with VHDL to create the FPGA prototype will get me most of the way there.

3.1 Requirements with Checklist

Requirement Checklist

The system will be built using VHDL. Accomplished

The system will be prototyped on a Xilinx
Arty S7-50 FPGA.

Accomplished

The system will match the common
functionality of software implementations.

Accomplished

A basic implementation will be ready for
presentation by week 12.

Presented a system that could read and play
back sound. Although that entire section
was rewritten during semester 2 as the

system improved

The remaining functionality will be
implemented, tested, and presented by week

24.

A functional system was presented at the
Capstone Expo

The system will be used to perform live
music as the final test in week 24.

A performing system was presented at the
Capstone Expo

Table 1: Requirements with a checklist of outcomes

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 14 of 84

3.2 Functionality with Checklist
In order to properly match the functionality of software based granular synthesis, I have
defined the functionality that needs to be implement via hardware. Six functions are
identified in the table below [12].

Functionality Description Checklist

Density# The number of grains to be
generated per second.

This should be from 0 to at least
2000 grains per second.

2000 grains per second is about the
default speed, and this can be easily
reduced to 0. (Note that they are not
overlapping - More than 4000 per

second requires overlapping)

ASynchronicity Determine whether the grains are
produced synchronously, and if
not, the degree of synchronicity

allowed

Async enable and a multi level
randomiser for degree of

Asynchronicity has been built

Envelope
Length#

The length of the audio segment,
with the envelope applied. The

envelope itself will be a gaussian
curve. Range 15-40ms. Default

will be 21ms

Variable length envelope created. It
however uses an amplitude varying

trapezoidal envelope, instead of
Gaussian. This give more control

over attack and release times of the
grain.

Frequency# Shift the grain frequency within
the audio hearing range

Can shift frequency up or down an
octave with a high degree of clarity.

Amplitude# The peak amplitude of each
grain, from 0.0 to 1.0

Complete amplitude control, created
and utilised in envelope creation

Input Data
control

Stream continuous audio or hold
audio in one position - allows

time stretching and elongation of
sounds

Can stream or hold on a single grain.

#: These values can also have an offset value, which allows them to have a +/- random offset from the defined value.

Table 2: Functionality with a checklist of outcomes

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 15 of 84

3.3 Testing and Quality Assurance Plan
Pitch and timing are both critical in music and sound production. Not mission critical, but if
the pitch is off, or if slow timing or lag can be perceived aurally, then it means the system is
not effective or efficient enough. These were two key issues I tracked most vigilantly
throughout the process.

For pitch testing I used sine wave input. Using sine waves allows me to easily hear
discrepancies in the pitch. This is due to the fact that I have perfect pitch recognition skills.
Using sine waves also allows me to measure the actual period of the waveform to ensure the
pitch is what I expect it to be.

The correct value can be easily calculated with sine wave testing. For example a test sine
wave of 432 Hz has a period 1/432. If I shift the pitch up one full octave, the output
frequency should be 864 Hz, with a period of 1/864. This is exactly half the period of the
input. If I shift the pitch down one octave the output pitch should be 216 Hz, with a period of
1/216, which is exactly double that of the input. These values will be tested and verified in
the results and verification chapter.

Testing the timing was done by monitoring the timing reports in Xilinx’s Vivado software, as
timing is also critical in VHDL designs. The timing procedures for the sampling and pitch
shifting were modified and optimised numerous times during the implementation process in
order to ensure that all data was ready by the next clock cycle, ensuring the system ran like
clockwork. Making the code more modular also helped resolve some timing issues.

3.4 Hardware for Project
The granular synthesis design was implemented on a Xilinx Arty S7-50 FPGA

The specification of the Arty S7-50 [30]:
● Spartan 7 FPGA
● 256 MB DDR3L with a 16-bit bus @ 650 MHz
● Internal clock speeds exceeding 450MHz;
● DSP Slices: 120
● Clock Management Tiles: 5
● Flip-flops: 65,200
● Slices: 8,150
● Logic Cells: 52,160
● 1 MSPS On-chip ADC

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 16 of 84

Figure 6: The Xilinx Arty S7-50 FPGA

In retrospect I wish I had purchased an older board. Because this board was only a couple of
months old when I purchased it, there was very little documentation or example code
available, other than the manufacturer's official documentation. This meant that there were
many times where I felt I was fumbling around and having to experiment just to achieve
some basic action that was well covered on many websites regarding older FPGA boards.
Unfortunately I was drawn to this board because of the specification, instead of the resources.
Despite this I eventually found my way though, and am now a lot more comfortable with this
board, plu now it is almost 1 year old, so documentation and examples are starting to become
more common.

Other Hardware required:
● Digital to Analogue converter - obtained - PMOD-AMP3

○ This took some time to adapt for the Arty S7, but has been an extremely useful
module!

● Accelerometer - obtained - PMOD-ACL2
○ This was obtained but did not function. I spent days trying to get their inhouse

demo running, but in the end I concluded the hardware was faulty, as I could
never get any input from the device. I will return the device.

● MIDI input port - Ordered in May but never received!! - PMOD-MIDI-IN
○ I was really looking forward to this module. It would have been perfect for

performance. I have contacted the distributor multiple times, over the past 5

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 17 of 84

months, but they are just ignoring my communication. This was going to be
used to control the input sliders. At the moment I am stuck using the Arty S7
onboard switches and buttons - which I have optimised for performance, but it
is not ideal, and has narrowed how I can interact considerably. I will probably
create my own input device in the future, now that I feel a lot more confident
with this technology.

3.5 Budget

There was no strict budget for this project. I decided from the onset to propose and fund the
project myself, as this is a personal hobby as much as a research project for me. I purchased
the parts with the intention of being able to keep using them for the next decade.

With my own personal budget in mind though, I wanted to keep the project under $250AUD.
Which I have accomplished, although I will need to make a few more purchases in the future
if I want to go beyond a prototype stage.

I spent $218.98AUD at digikey.com.au - including postage and GST:

Table 3: Digikey.com.au expenses

The PMOD-MIDI was $30AUD

So I am currently down $50, which I could use to purchase much better controllers, which
would bring me back to the $250 range

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 18 of 84

3.6 Schedule

I kept to my schedule quite tightly, and am happy with the progress I made throughout the
semester. The following chart from last semester, has been updated it with my current progress.

Note: Blue = completed, Purple = to do
Weeks 3 4 5 6 7 8 9 10 11 12 B 13 14 15 16 17 18 19 20 21 22 23 24 E

Confirm project

Research
Literature

Modules

Project Proposal

Flow charts

Acquire hardware

Test hardware

Basic Entity design

B. Behav. design

Synthesis

Compile

Test

First Presentation

First Report

Advanced Entity

Adv, Behaviour

Adv. Synthesis

Test

Upgrade

Journal Article

Final Report

Performance

Final Presentation

Table 4: Semester 2 progress

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 19 of 84

4. Implementation of Design

In this chapter I will reiterate the designs that were developed, and then compare them to
what was actually implemented. I will use the schematic diagrams within this chapter to
make the comparisons, as they are easier to visually compare and follow, and I will reference
the VHDL code which will be included at the end of this report, to verify the schematics.

4.1 Overall Design
This granular synthesis system is designed to receive a constant audio stream via an Analog
to Digital Converter. The converted audio data is then processed and manipulated, based on
the functionality controllers defined in the previous chapter. The processed data is then
converted back to audio by a Digital to Analog Converter.

Figure 7: The overall design of the system

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 20 of 84

The system has been designed as a monophonic device, with a mono input, and mono output,
which is common in audio hardware devices, as many instruments are mono. The audio input
includes ¼ inch audio socket to plug in most audio device. This could be a recording, a
microphone input, or an instrument, such as a keyboard, electric guitar or even another
synthesizer. The PMOD-AMP3 actually contains two ⅛ inch mono jacks that could be used
for stereo, using an adaptor, but per my specification, I have just created a mono output, and
both outputs are identical. In the future I might consider spatialising the grains across a stereo
spectrum. The audio output can then be plugged into a speaker, a mixing desk, or another
synthesizer, if you want to create a modular chain of synthesizers.

Originally the controllers were going to be analog controllers, such as sliders or knobs,
however after much thought I have decided the controllers will be digital inputs. This will of
course make them easier to read, but the main reason they will be digital is because I have
decided to implement them as MIDI input controllers.

MIDI is a communication protocol that stands for Musical Instrument Digital Interface. It
was developed in 1983 by Dave Smith and uses an 8 bit communication protocol. MIDI can
support up to 128 controllers simultaneously. The main reason I want to use MIDI however,
is to allow a musician to easily bypass the built in controls and use their own controllers.

There are many forms of MIDI controllers, such as the traditional musical keyboards, and
mixing board with sliders, knobs, but also more unique controllers such as breath controllers.
Many musicians own at least one MIDI device. This will add a layer of usability that makes
the device more versatile and multifaceted.

Unfortunately as I still do not have the MIDI interface device this cannot be implemented. I
will however implement this feature at some point in the future, even if I have to create my
own MIDI input device. There may be a market for this, considering how hard it was to find
one in the first place, one that did not even deliver!

I acquired a 5000mAh battery with two usb outputs, so I could plug in both the FPGA and a
speaker and make the system completely portable. With some retractable cords, this entire
system easily and neatly packs into a small box. I have been using my mobile phone,
generating a sine wave tone for testing.

The system currently looks like this when it is in use:

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 21 of 84

Figure 8: Arty S7 plugged into a battery, mobile phone, and speaker.

4.2 Terminology
Whilst designing the system, I defined terminology that is used to describe the various
functions and features of the system. The following chart describes the terms used, plus it
also lists the symbol used to define the term, and the default range and value. These terms are
used to describe the design in section 4.3.

Term (Symbol) Definition Default
Max Range

Amplitude (a) The maximum allowable amplitude level of an individual
grain.

Default: 1.0
σ[0.0,1.0]

Asynchronicity (s) Each grain can be initiated synchronously, or allow a
certain amount of random offset from the original
initiation time. This offset renders the stream of grains
asynchronous.

Default: 0.0
σ[-ti,ti]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 22 of 84

Audio In this system audio will refer to the analog or digital
stream of audio

n/a

Counter (c) To countdown event onsets Default: i
σ[0,i]

Density (ρ)
(lowercase rho)

The number of grains initiated per second. Default:
50 Per Sec
σ[0,2000]

Envelope Shape
(E)

The shape of the envelope applied to the grain, commonly
a gaussian curve, although a simple linear ASR
trapezoidal amplitude varying envelope is just as effective,
and in some cases more useful, if you want to adjust the
shape of the grain quickly.

n/a

Envelope Length
(w)

The length of the envelope enclosing the grain, in other
fields this may be referred to as a window. The length was
derived from experiments in minimum sonic perception by
Gabor in 1947 [1].

Default: 21ms
σ[10,50]

Frequency (f) The oscillation rate of sound measured over a second. By
adjusting the oscillation rate it is possible to adjust the
frequency of each grain. This can be accomplished with an
FFT, shift, then inverse FFT process, or by controlling the
input and output sample rates.

Default: 440Hz
σ[20,10000]

Grain (G) The sonic grain, originally defined as a Logon by Dennis
Gabor in his 1947 publication the “Theory of
Communication”, from the Journal of the Institution of
Electrical Engineers.

n/a

Interonset (ti) An acoustics term that defines the length of an interval
between the onset of two successive sonic events. The
onset, may be offset by a random value based on the
asynchronous control.

Default: 1/ρ
Per Sec
σ[n/a]

Index (i) For iterative processes n/a

Poll Timer (t) May be redundant - might use interonset to set polling
event

n/a

Range (σ[a,b]) σ denotes spread or range for each attribute of the grain
where [a,b]⇒{x∈ℝ:a≤x≤b}. The input for this is a single
controller so any change in this value will spread outward,
with the base value in the centre.

n/a

Table 5: Terminology used in the design

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 23 of 84

4.3 Detailed Design
The next section contains detailed designs for the granular synthesis system, and the
implemented schematic . It includes data flow, logic, and algorithms that will be
implemented, and what has been implemented.

The next two pages show the overall system, in much more detail than figure 7.

The impl,emtation diagram is broken into sections, each section defining a separate module
that is given in more detail later on. For each separate module, there is also an associated
implementation schematic so that the detail can also be observed in the implementation.

The implementation did not vary from the design, in any major way, although a few things
seemed more beneficial to implement in different places, during the building stage. These
discrepancies will be noted.

Essentially the system works by receiving audio data from the xadc, performing an optional
pitch shift and storing in memory where the system is constantly reading from at the DVD
audio sample rate (48KHz). That audio is then converted into a grain conforming to the size,
envelope shape and density as supplied by the user. The grain is then played. When thousands
of these grains play per second, each with their own individual settings, a sonic texture can
emerge that is quite detailed and complex, providing a richer sonic experience than that
offered by the original tone.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 24 of 84

Figure 9: The overall design of the system

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 25 of 84

Figure 10: The overall implementation of the system

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 26 of 84

Figure 11: The design for grain density and grain timing, including asynchronous offset

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 27 of 84

< Figure 12: The design for grain density

This calculates when to enable a new grain. It also calculated
the envelope shape and envelope length, as these attributes
also contribute to the density.

The 12 bit random value passed in was calculated using the
following polynomial:

RND [1 - 12] = f(x) [x3 - x14]

Where Polynomial: f(x) = x35 + x33 + + x30 + x29 + x24 +
x22 + x21 + x17 + x14 + x9 + x8 + x7 + x4 + x2 +1

The code for the polynomial can be seen in the source code
at the end of this document. It is just a standard LFSR.

The grain timing was carried out in a separate module that
was responsible for the timing of all components, called
generate clock. It calculates all the clocks required by the
system, including the variable clocks for the XADC, the
bitrate byteclock, and the sample rate lrclock.

The incoming system clock runs at 100MHz. I divide this by
8 to get a base rate of 12.5MHz, which is the rate at which
the system sends audio bits. 100Mhz divided by 64 calculates
the byte rate of 1.5625MHz. Dividing the byte rate by 32
gives me a sample rate of 48.828KHz which is just a tad over
DVD sample rate quality. The variable clock rate uses the
100MHz system clock to adjust itself above and below the
base rate to provide exact variable rate sample changes to
enact pitch shifting.
The clock generator code was completely rewritten 5 times,
this current system being extremely versatile and accurate
despite seeming very sparse. The lack of code and idea to use
various bits from the counter vector was a breakthrough in
adding stability and keeping the logic well under a single
100MHz clock tick. I am very proud of it. (see figure 13)

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 28 of 84

Figure 13: The timing module for the system.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 29 of 84

Figure 14: Halt incoming audio design

The audio halt algorithm was included in the pitch shift algorithm because it was decided to
use the same memory space to store the current grain and perform the pitch shift. This means
the system is always pulling data from the same location , whether or not it is updated or
shifted in pitch. I think this was a fantastic idea for the implementation, and it works very
well. (See figure 16 for implementation)

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 30 of 84

Figure 15: Pitch shift design

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 31 of 84

The original plan was to create an
FFT and inverse FFT to control the
pitch shift, however when this was
implemented the shift always seemed
inharmonic, and was also delayed by
about 100ms, which is difficult to
work with in live performance. The
performer has to play slightly ahead
of the beat to keep on the beat, and
this becomes even more difficult
when improvising with other
musicians. You can’t follow a
musician if you have to play ahead of
them. To put the delay into context, a
modern song usually has a tempo of
140 beats per minute, which is about
430ms per beat. Having a delay of
about 100ms already puts you out by
quarter of a beat.

This process instead relies on
adjusting the sample rate to achieve
pitch shifting. I chose to change the
sample rate at the input, as the inbuilt
XADC is very fast, and I can control
it very accurately. The outgoing
audio is always running at 48Khz,
without exception, to ensure a
constant and smooth audio
experience. The pitch shift module
acts as a differential between the two
rates, allowing the incoming rate to
exceed the outgoing rate for shifting
the pitch up, and vice versa. When it
creates a sample it is copied into the
memory array here. When the user
halts input it just stops updating the
memory array. The system tracks an
input and output pointer to the
memory to maintain coherency.

Figure 16: Pitch shift implementation

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 32 of 84

Figure 17: Grain length Calculation

Grain length is already calculated at the time the density is calculated in figure 12. This is
because the length, density and grain overlap are all part of the same equation, and I deemed
it more efficient to calculate these simultaneously

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 33 of 84

Figure 18: Apply the envelope design

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 34 of 84

Figure 19 - Part 1: Apply the envelope implementation

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 35 of 84

Figure 19 - Part 2: Apply the envelope implementation

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 36 of 84

The amplitude envelope implementation is quite detailed because this is where many of the
components come together. All that is passed out of this module if the outgoing grain, and a
finished flag, when each grain is completed.

The inputs for this module include when to begin creating a grain, with an optional random
offset adjustment, the grain length, the attack and decay ramp of the trapezoidal amplitude
envelope, bypass, and the incoming audio. At this point of the process the grain is complete,
and can be sent to the output DAC.

4.4 Storing on QuadSPI

Storing the SILO program onto the QuadSPI allows for semi-permanent usage. That is, it will
remain programmed through power cycles and resets, until the QSPI is reprogrammed.

As this was a new FPGA board, Xilinx had not yet published the procedures for storing via
QSPI. Fortunately I was able to discover this myself through experimentation:

In Tools→Settings→Bitstream
● Tick .bin file

Synthesize
In Tools→Edit Device Properties

● set Enable Bitstream Compression to TRUE
● Under Configuration, set Configuration Rate (Mhz) to 50
● Under Configuration Modes, select Master SPI x4

Generate Bitstream
Put Jumper on JP1
In the hardware manager select Add Configuration Memory Device
Add the memory device: S25fl128s

Select the SILO.bin file

After you click OK the process will begin. It takes about 1 minute.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 37 of 84

5. Results

The device works, and can perform the functions as originally envisioned. I demonstrated the
audio capabilities at the capstone expo to quite a large number of people who came to listen. I
will also demonstrate it at the final presentation in November.

A stated in the methodology I would test the results aurally first, and then view the audio
visually, to determine whether it suited the requirement.

Aurally the synthesis method works reasonably well. The XADC tends to normalise the
signal - which is undesirable because I want to have complete control of the amplitude.
Despite turning this feature off on the XADC it still remains on. I have notified Xilinx and
am awaiting a response. It basically means that the signal to noise ratio is much lower than I
would prefer, especially when the signal is very quiet. Also without the sliders, I cannot
perform with nuance. I can however demonstrate all of the functions working, which was the
goal of the project.

Referring to the functionality list I can now expand on the output in table 5:

Functionality Description Results

Density The number of
grains to be

generated per
second.

This should be
from 0 to at least
2000 grains per

second.

It easily manages 0 to 2000 grains per second -
however it currently does not allow for

overlapping grains. This can be addressed by
creating parallel streams on the FPGA. According

to the utilisation chart [See figure 20]. there are
enough resources on the FPGA to create 9 more

streams. It would just require duplicating most of
the modules, and adding one small module that

kept track of which streams were activate.

ASynchronicity Determine whether
the grains are

produced
synchronously, and
if not, the degree of

synchronicity
allowed

Asynchronicity works well, it is just a pity I don’t
have a slider to change the variance of the

asynchronicity, currently using buttons I only have
3 levels of asynchronicity, So it is either

synchronous, somewhat asynchronous, and very
asynchronous. [See figure 23].

Envelope
Length

The length of the
audio segment,

with the envelope
applied. The

The envelope length works as expected. Again a
slider would provide more variation and different
levels of variance, instead of relying on a switch
and 2 levels of randomness to change length. The

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 38 of 84

envelope itself will
be a gaussian curve.

Range 15-40ms.
Default will be

21ms

attack and release of the trapezoid are also both
independent, which is a bonus feature not

originally proposed.

/ Sustain \
/ Attack Release\

Frequency Shift the grain
frequency within
the audio hearing

range

Frequency can shift up or down an octave with a
high degree of clarity, using button switch

combination. [See figure 21 & 22] for more
details.

Amplitude The peak amplitude
of each grain, from

0.0 to 1.0

Complete amplitude control, created and utilised in
envelope creation. It sets the maximum level of the

envelope allowed.

Input Data
control

Stream continuous
audio or hold audio

in one position -
allows time

stretching and
elongation of

sounds

Can stream or hold on a single grain, at the press
of a button. Works beautifully.

Table 5: Functionality with results

Figure 20: Xilinx utilisation summary of the project - I still have over 90% resources free

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 39 of 84

Figure 21: 3 grains lined up under the source audio - line on source peak

Figure 22: 3 grains lined up under the source audio - line on next source peak

When we line up three grains of varying frequency we can measure the effectiveness of the
pitch shift.

The source is 432Hz
Grain 1: should be 864 Hz
Grain 2: should be 432 Hz
Grain 3: should be 216 Hz

As we can see in one cycle of the source:
Grain 1 has just completed 2 cycles - which is correct.
Grain 2 has just completed 1 cycle - which is correct.
Grain 3 has just completed ½ a cycle - which is correct.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 40 of 84

Figure 23: Example of Asynchronicity.

You can see the individual grains with variable start times and lengths

The other thing I mentioned explicitly to monitor in the methodology was the timing. The
reports below report good news:

Figure 24: Xilinx timing summary

Max Delay Paths

--

Slack (MET) : 6.518ns (required time - arrival time)

Source: random12bit/x9_reg/C

(rising edge-triggered cell FDRE clocked by sys_clk_pin

{rise@0.000ns fall@5.000ns period=10.000ns})

Destination: random12bit/x10_reg/D

(rising edge-triggered cell FDRE clocked by sys_clk_pin

{rise@0.000ns fall@5.000ns period=10.000ns})

Path Group: sys_clk_pin

Path Type: Setup (Max at Slow Process Corner)

Requirement: 10.000ns (sys_clk_pin rise@10.000ns - sys_clk_pin

rise@0.000ns)

Data Path Delay: 3.357ns (logic 0.456ns (13.583%) route 2.901ns (86.417%))

Logic Levels: 0

Clock Path Skew: 0.015ns (DCD - SCD + CPR)

Destination Clock Delay (DCD): 4.270ns = (14.270 - 10.000)

Source Clock Delay (SCD): 4.484ns

Clock Pessimism Removal (CPR): 0.230ns

Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE

Total System Jitter (TSJ): 0.071ns

Total Input Jitter (TIJ): 0.000ns

Discrete Jitter (DJ): 0.000ns

Phase Error (PE): 0.000ns

Table 6: Snippet from Xilinx max delay report

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 41 of 84

Looking at the timing report in table 6 we can see the worst negative slack in the
implementation is 6.518 NS. Looking more closely at this in figure 25 we can see it occurs
generating random numbers. The timing requirement is 10 NS at 100 MHz, so this easily falls
within the range.

6. Further Discussion

In this chapter I will discuss some development issues, the results, and also look at what I
would like to do next with this project.

6.1 Timing Issues
This project was initially plagued by timing issues. Working with audio requires precise
timing. As I mentioned around figure 12, I rewrote the timing code 5 times, looking for a
more precise method. Originally it was very complex, and resulted in poor quality audio. I
then tried using the system 12 MHz clock for the timing which worked well, unless I wanted
to perform pitch shifting. So I went back to the 100MHz clock and looked at better ways to
divide it. I needed 5 clocks and it occured to me that a counter would give me different clocks
based on which bit I was using. This concept totally changed the way I performed timing and
made the process very simple, yet very accurate. I had to use two counters because I could
not divide one counter into the required bits, but by creating a second counter that
incremented every 32nd clock (100000b) allowed me to create a subset to achieve the
remaining required clock values..

clk_process: process(clk100)

begin

if rising_edge(clk100) then

if (base_counter + 1 = "100000") then

counter <= counter + 1;

end if;

base_counter <= base_counter + 1;

end if;

end process;

this_pitch <= not pitch & pitch_en;

base_clock <= std_logic(base_counter(2));

i2s_bclk <= std_logic(base_counter(5));

var_clk <= std_logic(base_counter(3)) when this_pitch = "11" else

std_logic(base_counter(1)) when this_pitch = "01" else

std_logic(base_counter(2));

i2s_lrclk <= std_logic(counter(4)); -- about 48KHz

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 42 of 84

var_lrclk <= std_logic(counter(5)) when this_pitch = "11" else

std_logic(counter(3)) when this_pitch = "01" else -- Pitch lower

std_logic(counter(4)); -- Pitch normal

end Behavioral;

6.2 Analog to Digital Conversion Issues:

The XADC analog to digital converter can sample at a rate up to 100 MHz. It is very
configurable, but so complex it needs to be initiated through a Xilinx IP. I was able to figure
out the IP, but when I first began work on this project there was just one demo and it was
implemented as a block design, not in VHDL or even Verilog, so it took me quite a long time
experimenting to discover where and how to trigger it correctly, using the appropriate pins on
the board, and the correct byte code to tell the XADC which pins to use.

Even when that was finally working the audio signal was still low quality. At first I thought it
was the timing causing the issue, but asking people on the Xilinx forums I was informed that
it required AC coupling to move the signal into the positive range, because it was only
reading 0v to 1v. This meant building some extra circuitry. I later found out however that the
XADC has a bi-polar option that will change the sampling mechanism to read -0.5v to 0.5v.
This was a lot simpler and almost immediately fixed the issue. There were also settings to
adjust the gain and offset, which I turned off, however, it is still adding gain and I have not
resolved that yet. This means that the signal to noise ratio is low, and as the signal gets softer
the noise gets louder, because of the auto gain. I am still hoping to resolve this. It doesn’t
affect the functionality of the system, but it does reduce the quality.

6.3 Discussion of Results

Despite a few quality flaws, I believe I have created a prototype that fulfills the functionality
requested. As already discussed I was unable to obtain the slider component I wanted to use,
despite ordering 5 months ago. I have come to the realisation that I will never get the part I
ordered, and the distributors will no longer help or communicate with me. I have however
designed the system to function without it. I have less control over the functionality, but I still
have enough control to demonstrate that all functional requirements were met.

The implementation was quite similar to the design proposed. I optimised it in a few places
whilst building where I realised the design was more cumbersome than it needed to be. I
think the implementation is now better than the original design.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 43 of 84

I am very happy with the timing being well below the required clock rate. It is something I
was vigilant about, and it paid off.

The FPGA utilisation is less than 10%. One of my earlier pitch shift modules used up 80% of
the board, and took over half an hour to synthesize. I realised that this was not a good
method, so I changed the pitch shift method, after discussing the issue with some audio
engineers. The new method just relies on an accurate clock and a good ADC. As you could
see in figure 21 and 22, the pitch shifting is quite accurate, although there is a little noise in
the signal, which i hope to improve. I am still keen to run parallel streams and use more of
this space to create a denser texture, however I don’t want to do this until all quality issues
are resolved, in case it involves a major rewrite of some component. I doubt it will, but I just
want to be sure.

6.4 Future Prospects

I plan on working on this project beyond my degree, because I believe it is useful, it shows a
lot of promise, and I believe it can be improved well beyond what other hardware developers
have done with this synthesis technique. I would even say that my current prototype is
already close to the two commercial hardware implementations I discussed in the literature
review. I would eventually like to have a full implementation on an ASIC that can be
included in a small synthesizer module that can be added to a synthesizer rig.

I also plan on making my own MIDI to FPGA controller because I think it will be useful to
me, and also a wider public. I actually think that component alone would make a nice
capstone project, and I might have considered it as an alternative to this project because the
scope is much more defined, it is easier to test, and it would have been a better sized project
for the time given. This project on the other hand has taken many many more hours than the
12 hours per week allotted to it. I don’t mind because it is a passion project.

I am planning on presenting the SILO hardware granular synthesizer at the next international
NIME (New Instruments for Musical Expression) conference, and the International Computer
Music Conference. I believe it will be very popular at both of those conferences.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 44 of 84

7. Conclusion

Originally I set out to create a hardware granular synthesizer that could match the
functionality of the software granular synthesis implementations. After defining these
functions, designing a solution, and building an implementation of the solution, I believe I
can answer quite confidently that yes, you can build a hardware granular synthesizer to match
the functionality.

Even with my limited but rapidly growing VHDL knowledge I have been able to create a
usable prototype, that still has room for improvement, but very clearly addresses the thesis
made in this project. I have enjoyed working on this project, and look forward to improving
my VHDL skills well beyond my degree. I hope to use the SILO on a large stage one day.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 45 of 84

8. Source Code and Reports
All VHDL code I created is listed below:

silo.vhd

--

--

-- silo.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

--

-- Libraries

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_unsigned.all;

USE IEEE.NUMERIC_STD.ALL;

use IEEE.math_real.all;

Library UNISIM;

use UNISIM.VComponents.all;

--

-- Entity

--

entity SILO is

Port (

clk100 : in STD_LOGIC;

--## xadc

VP : in STD_LOGIC; -- pin: j10

VN : in STD_LOGIC; -- pin: k9

--## Buttons

RESET : in STD_LOGIC; -- btn[0]

HOLD : in STD_LOGIC; -- btn[1]

ASYNC_HILO : in STD_LOGIC; -- btn[2]

PITCH_HILO : in STD_LOGIC; -- btn[3]

--# Switches

OFF : in STD_LOGIC; -- sw[0]

BYPASS : in STD_LOGIC; -- sw[1]

ASYNC_EN : in STD_LOGIC; -- sw[2]

PITCH_EN : in STD_LOGIC; -- sw[3]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 46 of 84

LED : out STD_LOGIC_VECTOR (3 downto 0);

--## pmod amp3 - JB

pmod_i2s_sd : out STD_LOGIC := '0';-- pin: jb[7]

pmod_i2s_mclk : out STD_LOGIC; -- pin: jb[6]

pmod_i2s_bclk : out STD_LOGIC; -- pin: jb[3]

pmod_i2s_lrclk : out STD_LOGIC; -- pin: jb[0]

pmod_i2s_sdat : out STD_LOGIC -- pin: jb[1]

);

end SILO;

--

-- Components

--\

architecture Behavioral of SILO is

component xadc_wiz_0 is

port (

daddr_in : in STD_LOGIC_VECTOR (6 downto 0); -- Address bus for

the dynamic reconfiguration port

den_in : in STD_LOGIC; -- Enable Signal for

the dynamic reconfiguration port

di_in : in STD_LOGIC_VECTOR (15 downto 0); -- Input data bus for

the dynamic reconfiguration port

dwe_in : in STD_LOGIC; -- Write Enable for

the dynamic reconfiguration port

do_out : out STD_LOGIC_VECTOR (15 downto 0); -- Output data bus

for dynamic reconfiguration port

drdy_out : out STD_LOGIC; -- Data ready signal

for the dynamic reconfiguration port

dclk_in : in STD_LOGIC; -- Clock input for

the dynamic reconfiguration port

reset_in : in STD_LOGIC; -- Reset signal for

the System Monitor control logic

convst_in : in STD_LOGIC; -- Convert Start

Input

busy_out : out STD_LOGIC; -- ADC Busy signal

channel_out : out STD_LOGIC_VECTOR (4 downto 0); -- Channel Selection

Outputs

eoc_out : out STD_LOGIC; -- End of Conversion

Signal

eos_out : out STD_LOGIC; -- End of Sequence

Signal

alarm_out : out STD_LOGIC; -- OR'ed output of

all the Alarms

vp_in : in STD_LOGIC; -- Dedicated Analog

Input Pair

vn_in : in STD_LOGIC

);

end component;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 47 of 84

component pitchshift is

port (

lrclk : in STD_LOGIC;

freeze : in STD_LOGIC;

var_lrclk : in STD_LOGIC;

audio_in : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

audio_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

LED : out STD_LOGIC_VECTOR (3 downto 0)

);

END component;

component i2s_clock_generator is

Port (

clk100 : in STD_LOGIC;

pitch_en : in STD_LOGIC;

pitch : in STD_LOGIC;

var_clk : out STD_LOGIC;

var_lrclk : out STD_LOGIC;

base_clock : out STD_LOGIC;

i2s_bclk : out STD_LOGIC;

i2s_lrclk : out STD_LOGIC

);

end component;

component powerup_controller is

Port (mclk : in STD_LOGIC;

powerup : out STD_LOGIC);

end component;

component i2s_transmitter is

Port (mclk : in STD_LOGIC;

bclk : in STD_LOGIC;

lrclk : in STD_LOGIC;

sample_left : in STD_LOGIC_VECTOR (15 downto 0);

sample_right : in STD_LOGIC_VECTOR (15 downto 0);

sdat : out STD_LOGIC);

end component;

component envelope is

Port (

lrclk : in STD_LOGIC;

grain_length : in unsigned(15 downto 0); -- samples from 480 to

2400 (10-50ms)

grain_attack : in unsigned(15 downto 0); -- expects samples from

16 to 1200 (1-50% of trapezoid)

grain_release : in unsigned(15 downto 0); -- expects samples

from 16 to 1200 (1-50% of trapezoid)

audio_in : in STD_LOGIC_VECTOR (15 downto 0);

enable_grain : in STD_LOGIC; -- when disabled output is

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 48 of 84

0000000000000000

BYPASS : in STD_LOGIC;

finished : out STD_LOGIC;

async_en : in STD_LOGIC;

async : in STD_LOGIC;

RND : in STD_LOGIC_VECTOR (11 downto 0);

audio_out : out STD_LOGIC_VECTOR (15 downto 0);

amplitude : in STD_LOGIC_VECTOR (15 downto 0));

-- "1111111111111111" = full volume

end component;

component density is

Port (

grain_length : out unsigned(15 downto 0);

-- samples from 480 to 2400 (10-50ms)

enable_grain : out STD_LOGIC; -- when disabled output is

0000000000000000

grain_attack : out unsigned(15 downto 0); -- expects samples from

16 to 1200 (1-50% of trapezoid)

grain_release : out unsigned(15 downto 0); -- expects samples

from 16 to 1200 (1-50% of trapezoid)

RND : in STD_LOGIC_VECTOR (11 downto 0);

async_en : in STD_LOGIC;

async : in STD_LOGIC;

finished : in STD_LOGIC;

create : in STD_LOGIC);

end component;

component rand is

Port (

clk100 : in STD_LOGIC;

RND : out STD_LOGIC_VECTOR (11 downto 0));

end component;

--

-- Port Maps

--

signal var_clk : STD_LOGIC;

signal var_lrclk : STD_LOGIC;

signal base_clock : STD_LOGIC;

signal i2s_bclk : STD_LOGIC;

signal i2s_lrclk : STD_LOGIC;

signal i2s_sdat : STD_LOGIC;

signal i2s_powerup : STD_LOGIC;

signal enable : STD_LOGIC;

signal ready : STD_LOGIC;

signal grain_finished : STD_LOGIC;

signal audio_to_pitch : STD_LOGIC_VECTOR(15 downto 0);

signal audio_to_env : STD_LOGIC_VECTOR(15 downto 0);

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 49 of 84

signal audio_out : STD_LOGIC_VECTOR(15 downto 0);

signal enable_grain : STD_LOGIC;

signal audio_to_buffer : STD_LOGIC_VECTOR(15 downto 0);

signal random : STD_LOGIC_VECTOR(11 downto 0);

signal grain_length : unsigned(15 downto 0);

signal grain_attack : unsigned(15 downto 0);

signal grain_release : unsigned(15 downto 0);

begin

-- xadc instantiation connect the eoc_out to den_in to get continuous conversion

readxadc: xadc_wiz_0 port map (

daddr_in => "0000011",

den_in => enable,

di_in => (others => '0'),

dwe_in => '0',

do_out => audio_to_pitch,

drdy_out => ready,

dclk_in => clk100,

reset_in => RESET,

convst_in => var_clk, --sample on rising edge

busy_out =>open,

channel_out => open,

eoc_out => enable,

eos_out => open,

alarm_out => open,

vp_in => VP,

vn_in => VN

);

pitch_shift: pitchshift port map (

var_lrclk => var_lrclk,

lrclk => i2s_lrclk,

audio_in => audio_to_pitch,

audio_out => audio_to_env,

freeze => HOLD,

LED => LED

);

generate_clock: i2s_clock_generator PORT MAP (

clk100 => clk100,

pitch_en => PITCH_EN,

pitch => PITCH_HILO,

var_clk => var_clk,

var_lrclk => var_lrclk,

base_clock => base_clock,

i2s_bclk => i2s_bclk,

i2s_lrclk => i2s_lrclk);

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 50 of 84

envelope_grain: envelope PORT MAP (

lrclk => i2s_lrclk,

grain_length => grain_length, -- 2400 in binary -- samples from 480 to

2400 (10-50ms)

grain_attack => grain_attack, -- 1024b from 8 to 1200 (10-50ms)

grain_release => grain_release, -- 256b from 8 to 1200 (10-50ms)

BYPASS => BYPASS,

async_en => ASYNC_EN,

async => ASYNC_HILO,

RND => random,

audio_in => audio_to_env,

enable_grain => enable_grain, -- when disabled audio output is

0000000000000000

finished => grain_finished,

audio_out => audio_out,

amplitude => "1111000000000000" --"1111111111111111" -- full volume

);

grain_density: density PORT MAP (

finished => grain_finished,

grain_length => grain_length, -- samples from 480 to 2400 (10-50ms)

enable_grain => enable_grain, -- when disabled audio output is

0000000000000000

grain_attack => grain_attack, -- 1024b from 8 to 1200 (10-50ms)

grain_release => grain_release, -- 256b from 8 to 1200 (10-50ms)

RND => random,

async_en => ASYNC_EN,

async => ASYNC_HILO,

create => OFF

);

random12bit: rand port map(

clk100 => clk100,

RND => random

);

i_i2s_transmitter: i2s_transmitter port map (

mclk => base_clock,

bclk => i2s_bclk,

lrclk => i2s_lrclk,

sample_left => audio_out,

sample_right => audio_out,

sdat => i2s_sdat);

i_powerup_controller: powerup_controller port map (

mclk => base_clock,

powerup => i2s_powerup);

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 51 of 84

-- Send it to the PMOD's interface

-- This small portion was from Mike Field:

-- Use a DDR output register to send out the I2S master clock

mclk_ODDR : ODDR generic map(

DDR_CLK_EDGE => "OPPOSITE_EDGE", -- "OPPOSITE_EDGE" or "SAME_EDGE"

INIT => '0', -- Initial value for Q port ('1' or '0')

SRTYPE => "SYNC") -- Reset Type ("ASYNC" or "SYNC")

port map (

Q => pmod_i2s_mclk, -- 1-bit DDR output

C => base_clock, -- 1-bit clock input

CE => '1', -- 1-bit clock enable input

D1 => '1', -- 1-bit data input (positive edge)

D2 => '0', -- 1-bit data input (negative edge)

R => '0', -- 1-bit reset input

S => '0' -- 1-bit set input

);

pmod_i2s_sd <= i2s_powerup; -- Active low shutdown signal

pmod_i2s_bclk <= i2s_bclk;

pmod_i2s_lrclk <= i2s_lrclk;

pmod_i2s_sdat <= i2s_sdat;

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 52 of 84

pitchshift.vhd

--

--

-- pitchshift.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity pitchshift is

port (

var_lrclk : in STD_LOGIC;

lrclk : in STD_LOGIC;

audio_in : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

audio_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

freeze : in STD_LOGIC;

LED : out STD_LOGIC_VECTOR (3 downto 0));

end pitchshift;

architecture Behavioral of pitchshift is

type a_memory is array(0 to 2400) of std_logic_vector(15 downto 0);

signal memory : a_memory := (others => (others => '0'));

signal in_pointer : unsigned (12 downto 0) := (others => '0');

signal out_pointer : unsigned (12 downto 0) := (others => '0');

begin

pitch_shift: process (var_lrclk)

begin

if rising_edge(var_lrclk) then

if (freeze = '0') then

-- pitch shift down or hold

memory(to_integer(in_pointer)) <= audio_in;

in_pointer <= in_pointer + 1;

if (in_pointer >= "100101100000") then --2400b

in_pointer <= (others => '0');

end if;

LED <= audio_in(15 downto 12);

end if;

end if;

end process;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 53 of 84

audio_outbound: process (lrclk)

begin

if rising_edge(lrclk) then

audio_out <= memory(to_integer(out_pointer));

out_pointer <= out_pointer +1;

if (out_pointer >= "100101100000") then --2400b

out_pointer <= (others => '0');

end if;

end if;

end process;

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 54 of 84

clock_generator.vhd

--

--

-- clock_generator.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

--

--

-- Module Name: clock_generator - Behavioral

--

-- Description: Generate all clocks from the 100MHz clock:

--

-- Base Counter [1] runs at 25Mhz - clock rate for sampling at about 96Khz

-- sampling at 96KHz and playing back at 48KHz = 1 octave lower

-- Base Counter [2] runs at 12.5Mhz - clock rate for sampling at about 48Khz

-- sampling at 48KHz and playing back at 48KHz = no change

-- Base Counter [3] runs at 6.25Mhz - clock rate for sampling at about 24Khz

-- sampling at 24KHz and playing back at 48KHz = 1 octave higher

--

-- Counter [4] generates a clock at 48.828Khz about DVD audio quality

-- Counter [5] generates a clock at 97.657Khz

-- Counter [3] generates a clock at 24.414Khz

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

Use Ieee.std_logic_unsigned.all;

library UNISIM;

use UNISIM.VComponents.all;

entity i2s_clock_generator is

Port (

clk100 : in STD_LOGIC;

pitch_en : in STD_LOGIC;

pitch : in STD_LOGIC;

var_clk : out STD_LOGIC;

base_clock : out STD_LOGIC;

i2s_bclk : out STD_LOGIC;

i2s_lrclk : out STD_LOGIC;

var_lrclk : out STD_LOGIC);

end i2s_clock_generator;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 55 of 84

architecture Behavioral of i2s_clock_generator is

signal base_counter : unsigned(5 downto 0) := (others => '0');

signal counter : unsigned(5 downto 0) := (others => '0');

signal this_pitch : STD_LOGIC_VECTOR(1 downto 0) := (others =>

'0');

begin

clk_process: process(clk100)

begin

if rising_edge(clk100) then

if (base_counter + 1 = "100000") then

counter <= counter + 1;

end if;

base_counter <= base_counter + 1;

end if;

end process;

this_pitch <= not pitch & pitch_en;

base_clock <= std_logic(base_counter(2));

i2s_bclk <= std_logic(base_counter(5));

var_clk <= std_logic(base_counter(3)) when this_pitch = "11" else

std_logic(base_counter(1)) when this_pitch = "01" else

std_logic(base_counter(2));

i2s_lrclk <= std_logic(counter(4)); -- about 48KHz

var_lrclk <= std_logic(counter(5)) when this_pitch = "11" else -- Pitch

higher

std_logic(counter(3)) when this_pitch = "01" else -- Pitch lower

std_logic(counter(4)); -- Pitch normal

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 56 of 84

envelope.vhd

--

--

-- envelope.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

--

-- Description: Trapezoidal Time varying Gain Amplifier

--

-- This part of the code does not check the validity of the data

-- it expects this to be validated already

-- _______________________

-- / Sustain \

-- / Attack Release\

--

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity envelope is

Port (

lrclk : in STD_LOGIC;

grain_length : in unsigned(15 downto 0); -- expects samples from

480 to 2400 (10-50ms)

grain_attack : in unsigned(15 downto 0); -- expects samples from 8

to 1200 (1-50% of trapezoid)

grain_release : in unsigned(15 downto 0); -- expects samples from

8 to 1200 (1-50% of trapezoid)

audio_in : in STD_LOGIC_VECTOR (15 downto 0);

enable_grain : in STD_LOGIC; -- when disabled output is

0000000000000000

BYPASS : in STD_LOGIC;

RND : in STD_LOGIC_VECTOR (11 downto 0);

async_en : in STD_LOGIC; -- allow asynchronicity

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 57 of 84

async : in STD_LOGIC; -- basic asynchronicity levels

audio_out : out STD_LOGIC_VECTOR (15 downto 0);

amplitude : in STD_LOGIC_VECTOR (15 downto 0); --

"1111111111111111" = full volume

finished : out STD_LOGIC

);

end envelope;

architecture Behavioral of envelope is

signal counter : unsigned (15 downto 0) := (others => '0');

signal iot : unsigned(15 downto 0) := "0000000000001000";

signal Asyncount : unsigned (15 downto 0) := (others => '0');

signal finished_grain : STD_LOGIC := '0';

begin

process(lrclk)

variable temp_audio: unsigned(47 downto 0);

begin

if (BYPASS = '1') then

audio_out <= audio_in;

else

if rising_edge(lrclk) then

audio_out <= (others => '0');

if finished_grain = '1' then

Asyncount <= Asyncount +1;

if (Asyncount > iot) then

Asyncount <= (others => '0');

finished_grain <= '0';

end if;

end if;

if ((enable_grain = '1') and (finished_grain = '0')) then

finished_grain <='0';

temp_audio := "0000000000000000" & unsigned(audio_in) *

unsigned(amplitude) / "1111111111111111";

if (counter < grain_attack) then

temp_audio := unsigned(audio_in) * counter / grain_attack *

unsigned(amplitude) / "1111111111111111";

end if;

if (counter > (grain_length - grain_release)) then

temp_audio := unsigned(audio_in) * (grain_length - counter)

/ grain_release * unsigned(amplitude) / "1111111111111111";

end if;

audio_out <= std_logic_vector(temp_audio(15 downto 0));

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 58 of 84

counter <= counter + 1;

if (counter > grain_length) then

counter <= (others => '0');

finished_grain <= '1';

iot <= "0000000000001000";

if (async_en = '1') then

if (async = '1') then

iot <= "000" & unsigned(RND) & '0';

else

iot <= "00000" & unsigned(RND(9 downto 0)) & '0';

end if;

else

iot <= "0000000000000100";

end if;

end if;

end if;

end if;

end if;

end process;

finished <= finished_grain;

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 59 of 84

density.vhd

--

--

-- density.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity density is

Port (

grain_length : out unsigned(15 downto 0); -- samples from 480 to

2400 (10-50ms)

enable_grain : out STD_LOGIC; -- when disabled output is

0000000000000000

grain_attack : out unsigned(15 downto 0); -- expects samples from

16 to 1200 (1-50% of trapezoid)

grain_release : out unsigned(15 downto 0); -- expects samples

from 16 to 1200 (1-50% of trapezoid)

finished : in STD_LOGIC;

RND : in STD_LOGIC_VECTOR (11 downto 0);

async_en : in STD_LOGIC; -- allow asynchronicity

async : in STD_LOGIC; -- basic asynchronicity levels

create : in STD_LOGIC

);

end density;

architecture Behavioral of density is

signal variance : unsigned (11 downto 0);

begin

control: process(finished)

begin

variance <= unsigned(RND);

if (async_en = '0') then

variance <= "001111111111";

else

if (async = '0') then

variance <= unsigned("000010000000" + RND(8 downto 0));

end if;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 60 of 84

end if;

enable_grain <= create;

grain_length <= "000000" & (variance(9 downto 0)) + "10000000000";

--"0000100101100000";

grain_attack <= "00000000" & (variance(7 downto 0)) + 32;

--"0000100101100000";

grain_release <= "00000000" & (variance(7 downto 0)) + 32;

--"0000100101100000";

end process;

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 61 of 84

rnd.vhd

--

--

-- rnd.vhd

--

-- SILO, The Solid State Granular Synthesizer

--

-- Author: Timothy Opie

-- Copyright 2018

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity rand is

Port (

clk100 : in STD_LOGIC;

RND : out STD_LOGIC_VECTOR (11 downto 0)

);

end rand;

architecture Behavioral of rand is

signal x0, x1, x4, x6, x7, x8, x11, x12, x13, x14, x16, x17, x30, x31,

x34: STD_LOGIC := '1';

signal x2, x3, x5, x9, x10, x15, x18, x19, x20, x21, x22, x23, x24, x25,

x26, x27, x28, x29, x32, x33 : STD_LOGIC := '0';

begin

seq: process(clk100)

begin

if rising_edge(clk100) then

x0 <= x34;

x1 <= x0;

x2 <= x1 xor x34;

x3 <= x2;

x4 <= x3 xor x34;

x5 <= x4;

x6 <= x5;

x7 <= x6 xor x34;

x8 <= x7 xor x34;

x9 <= x8 xor x18;

x10 <= x9;

x11 <= x10;

x12 <= x11;

x13 <= x12;

x14 <= x13 xor x34;

x15 <= x14;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 62 of 84

x16 <= x15;

x17 <= x16 xor x34;

x18 <= x17;

x19 <= x18;

x20 <= x19;

x21 <= x20 xor x34;

x22 <= x21 xor x34;

x23 <= x22;

x24 <= x23 xor x34;

x25 <= x24;

x26 <= x25;

x27 <= x26;

x28 <= x27;

x29 <= x28 xor x34;

x30 <= x29 xor x34;

x31 <= x30;

x32 <= x31;

x33 <= x32 xor x34;

x34 <= x33;

end if;

end process seq;

-- Polynomial: f(x) = x35 + x33 + + x30 + x29 + x24 + x22 + x21 + x17 + x14 + x9

+ x8 + x7 + x4 + x2 +1

-- RND = f(x) [x3 - x14]

RND <= (x3 & x4 & x5 & x6 & x7& x8 & x9 & x10 & x11 & x12 & x13 & x14);

end Behavioral;

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 63 of 84

constraints.xdc

This file is a general .xdc for the Arty S7-50 Rev. B

set_property -dict {PACKAGE_PIN R2 IOSTANDARD SSTL135} [get_ports clk100]

create_clock -period 10.000 -name sys_clk_pin -waveform {0.000 5.000} -add

[get_ports clk100]

Switches

set_property -dict { PACKAGE_PIN H14 IOSTANDARD LVCMOS33 } [get_ports { OFF

}]; #IO_L20N_T3_A19_15 Sch=sw[0] SW[0]

set_property -dict { PACKAGE_PIN H18 IOSTANDARD LVCMOS33 } [get_ports { BYPASS

}]; #IO_L21P_T3_DQS_15 Sch=sw[1] SW[1]

set_property -dict { PACKAGE_PIN G18 IOSTANDARD LVCMOS33 } [get_ports {

ASYNC_EN }]; #IO_L21N_T3_DQS_A18_15 Sch=sw[2] SW[2]

set_property -dict { PACKAGE_PIN M5 IOSTANDARD SSTL135 } [get_ports {

PITCH_EN}]; #IO_L6N_T0_VREF_34 Sch=sw[3] SW[3]

LEDs

set_property -dict {PACKAGE_PIN E18 IOSTANDARD LVCMOS33} [get_ports {LED[0]}]

set_property -dict {PACKAGE_PIN F13 IOSTANDARD LVCMOS33} [get_ports {LED[1]}]

set_property -dict {PACKAGE_PIN E13 IOSTANDARD LVCMOS33} [get_ports {LED[2]}]

set_property -dict {PACKAGE_PIN H15 IOSTANDARD LVCMOS33} [get_ports {LED[3]}]

Buttons

set_property -dict { PACKAGE_PIN G15 IOSTANDARD LVCMOS33 } [get_ports { RESET

}]; #IO_L18N_T2_A23_15 Sch=btn[0]

set_property -dict { PACKAGE_PIN K16 IOSTANDARD LVCMOS33 } [get_ports { HOLD

}]; #IO_L19P_T3_A22_15 Sch=btn[1]

set_property -dict { PACKAGE_PIN J16 IOSTANDARD LVCMOS33 } [get_ports {

ASYNC_HILO }]; #IO_L19N_T3_A21_VREF_15 Sch=btn[2]

set_property -dict { PACKAGE_PIN H13 IOSTANDARD LVCMOS33 } [get_ports {

PITCH_HILO }]; #IO_L20P_T3_A20_15 Sch=btn[3]

PMOD Header JB

#1

set_property -dict {PACKAGE_PIN P17 IOSTANDARD LVCMOS33} [get_ports

pmod_i2s_lrclk]

#2

set_property -dict {PACKAGE_PIN P18 IOSTANDARD LVCMOS33} [get_ports

pmod_i2s_sdat]

#3

#set_property -dict { PACKAGE_PIN R18 IOSTANDARD LVCMOS33 } [get_ports { jb[2]

}]; #IO_L10P_T1_D14_14 Sch=jb_p[2]

#4

set_property -dict {PACKAGE_PIN T18 IOSTANDARD LVCMOS33} [get_ports

pmod_i2s_bclk]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 64 of 84

#7

#set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } [get_ports { jb[4]

}]; #IO_L11P_T1_SRCC_14 Sch=jb_p[3]

#8

#set_property -dict { PACKAGE_PIN P15 IOSTANDARD LVCMOS33 } [get_ports { jb[5]

}]; #IO_L11N_T1_SRCC_14 Sch=jb_n[3]

#9

set_property -dict {PACKAGE_PIN N15 IOSTANDARD LVCMOS33} [get_ports

pmod_i2s_mclk]

#10

set_property -dict {PACKAGE_PIN P16 IOSTANDARD LVCMOS33} [get_ports pmod_i2s_sd]

Dedicated Analog Inputs

set_property -dict {PACKAGE_PIN J10} [get_ports VP]

set_property -dict {PACKAGE_PIN K9} [get_ports VN]

Configuration options, can be used for all designs

set_property CONFIG_VOLTAGE 3.3 [current_design]

set_property CFGBVS VCCO [current_design]

set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]

SW3 is assigned to a pin M5 in the 1.35v bank. This pin can also be used as

the VREF for BANK 34. To ensure that SW3 does not define the reference

voltage

and to be able to use this pin as an ordinary I/O the following property must

be set to enable an internal VREF for BANK 34. Since a 1.35v supply is being

used the internal reference is set to half that value (i.e. 0.675v). Note

that

this property must be set even if SW3 is not used in the design.

set_property INTERNAL_VREF 0.675 [get_iobanks 34]

set_property CONFIG_MODE SPIx4 [current_design]

set_property BITSTREAM.CONFIG.CONFIGRATE 50 [current_design]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 65 of 84

Xilinx Vivado Utilisation Report

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

--

| Tool Version : Vivado v.2018.2 (win64) Build 2258646 Thu Jun 14 20:03:12 MDT

2018

| Date : Sun Oct 28 18:07:32 2018

| Host : evo running 64-bit major release (build 9200)

| Command : report_utilization -file SILO_utilization_synth.rpt -pb

SILO_utilization_synth.pb

| Design : SILO

| Device : 7s50csga324-1

| Design State : Synthesized

--

Utilization Design Information

Table of Contents

1. Slice Logic

1.1 Summary of Registers by Type

2. Memory

3. DSP

4. IO and GT Specific

5. Clocking

6. Specific Feature

7. Primitives

8. Black Boxes

9. Instantiated Netlists

1. Slice Logic

+----------------------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+----------------------------+------+-------+-----------+-------+

| Slice LUTs* | 2378 | 0 | 32600 | 7.29 |

| LUT as Logic | 2376 | 0 | 32600 | 7.29 |

| LUT as Memory | 2 | 0 | 9600 | 0.02 |

| LUT as Distributed RAM | 0 | 0 | | |

| LUT as Shift Register | 2 | 0 | | |

| Slice Registers | 221 | 0 | 65200 | 0.34 |

| Register as Flip Flop | 205 | 0 | 65200 | 0.31 |

| Register as Latch | 16 | 0 | 65200 | 0.02 |

| F7 Muxes | 0 | 0 | 16300 | 0.00 |

| F8 Muxes | 0 | 0 | 8150 | 0.00 |

+----------------------------+------+-------+-----------+-------+

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 66 of 84

* Warning! The Final LUT count, after physical optimizations and full

implementation, is typically lower. Run opt_design after synthesis, if not already

completed, for a more realistic count.

1.1 Summary of Registers by Type

+-------+--------------+-------------+--------------+

| Total | Clock Enable | Synchronous | Asynchronous |

+-------+--------------+-------------+--------------+

| 0 | _ | - | - |

| 0 | _ | - | Set |

| 0 | _ | - | Reset |

| 0 | _ | Set | - |

| 0 | _ | Reset | - |

| 0 | Yes | - | - |

| 16 | Yes | - | Set |

| 32 | Yes | - | Reset |

| 0 | Yes | Set | - |

| 173 | Yes | Reset | - |

+-------+--------------+-------------+--------------+

2. Memory

+-------------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------------+------+-------+-----------+-------+

| Block RAM Tile | 2 | 0 | 75 | 2.67 |

| RAMB36/FIFO* | 2 | 0 | 75 | 2.67 |

| RAMB36E1 only | 2 | | | |

| RAMB18 | 0 | 0 | 150 | 0.00 |

+-------------------+------+-------+-----------+-------+

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can

accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a

Block RAM Tile, that tile can still accommodate a RAMB18E1

3. DSP

+----------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+----------------+------+-------+-----------+-------+

| DSPs | 7 | 0 | 120 | 5.83 |

| DSP48E1 only | 7 | | | |

+----------------+------+-------+-----------+-------+

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 67 of 84

4. IO and GT Specific

+-----------------------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-----------------------------+------+-------+-----------+-------+

| Bonded IOB | 20 | 0 | 210 | 9.52 |

| Bonded IPADs | 0 | 0 | 2 | 0.00 |

| PHY_CONTROL | 0 | 0 | 5 | 0.00 |

| PHASER_REF | 0 | 0 | 5 | 0.00 |

| OUT_FIFO | 0 | 0 | 20 | 0.00 |

| IN_FIFO | 0 | 0 | 20 | 0.00 |

| IDELAYCTRL | 0 | 0 | 5 | 0.00 |

| IBUFDS | 0 | 0 | 202 | 0.00 |

| PHASER_OUT/PHASER_OUT_PHY | 0 | 0 | 20 | 0.00 |

| PHASER_IN/PHASER_IN_PHY | 0 | 0 | 20 | 0.00 |

| IDELAYE2/IDELAYE2_FINEDELAY | 0 | 0 | 250 | 0.00 |

| ILOGIC | 0 | 0 | 210 | 0.00 |

| OLOGIC | 1 | 0 | 210 | 0.48 |

| ODDR | 1 | | | |

+-----------------------------+------+-------+-----------+-------+

5. Clocking

+------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+------------+------+-------+-----------+-------+

| BUFGCTRL | 3 | 0 | 32 | 9.38 |

| BUFIO | 0 | 0 | 20 | 0.00 |

| MMCME2_ADV | 0 | 0 | 5 | 0.00 |

| PLLE2_ADV | 0 | 0 | 5 | 0.00 |

| BUFMRCE | 0 | 0 | 10 | 0.00 |

| BUFHCE | 0 | 0 | 72 | 0.00 |

| BUFR | 0 | 0 | 20 | 0.00 |

+------------+------+-------+-----------+-------+

6. Specific Feature

+-------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------+------+-------+-----------+-------+

| BSCANE2 | 0 | 0 | 4 | 0.00 |

| CAPTUREE2 | 0 | 0 | 1 | 0.00 |

| DNA_PORT | 0 | 0 | 1 | 0.00 |

| EFUSE_USR | 0 | 0 | 1 | 0.00 |

| FRAME_ECCE2 | 0 | 0 | 1 | 0.00 |

| ICAPE2 | 0 | 0 | 2 | 0.00 |

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 68 of 84

| STARTUPE2 | 0 | 0 | 1 | 0.00 |

| XADC | 0 | 0 | 1 | 0.00 |

+-------------+------+-------+-----------+-------+

7. Primitives

+----------+------+---------------------+

| Ref Name | Used | Functional Category |

+----------+------+---------------------+

| LUT2 | 1157 | LUT |

| LUT4 | 663 | LUT |

| CARRY4 | 616 | CarryLogic |

| LUT3 | 368 | LUT |

| LUT5 | 252 | LUT |

| FDRE | 173 | Flop & Latch |

| LUT6 | 166 | LUT |

| LUT1 | 94 | LUT |

| LDCE | 16 | Flop & Latch |

| FDPE | 16 | Flop & Latch |

| FDCE | 16 | Flop & Latch |

| IBUF | 11 | IO |

| OBUF | 9 | IO |

| DSP48E1 | 7 | Block Arithmetic |

| BUFG | 3 | Clock |

| SRL16E | 2 | Distributed Memory |

| RAMB36E1 | 2 | Block Memory |

| ODDR | 1 | IO |

+----------+------+---------------------+

8. Black Boxes

+------------+------+

| Ref Name | Used |

+------------+------+

| xadc_wiz_0 | 1 |

+------------+------+

9. Instantiated Netlists

+----------+------+

| Ref Name | Used |

+----------+------+

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 69 of 84

Xilinx Vivado Synthesis Report

#---

Vivado v2018.2 (64-bit)

SW Build 2258646 on Thu Jun 14 20:03:12 MDT 2018

IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018

Start of session at: Sun Oct 28 18:06:18 2018

Process ID: 4496

Current directory: Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1

Command line: vivado.exe -log SILO.vds -product Vivado -mode batch -messageDb vivado.pb

-notrace -source SILO.tcl

Log file: Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1/SILO.vds

Journal file: Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1\vivado.jou

#---

source SILO.tcl -notrace

Command: synth_design -top SILO -part xc7s50csga324-1

Starting synth_design

Attempting to get a license for feature 'Synthesis' and/or device 'xc7s50'

INFO: [Common 17-349] Got license for feature 'Synthesis' and/or device 'xc7s50'

INFO: Launching helper process for spawning children vivado processes

INFO: Helper process launched with PID 10356

Starting RTL Elaboration : Time (s): cpu = 00:00:04 ; elapsed = 00:00:05 . Memory (MB):

peak = 383.973 ; gain = 100.621

INFO: [Synth 8-638] synthesizing module 'SILO'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:74]

INFO: [Synth 8-3491] module 'xadc_wiz_0' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1/.Xil/Vivado-4496-evo/realtime/xadc_wiz_0

_stub.vhdl:5' bound to instance 'readxadc' of component 'xadc_wiz_0'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:207]

INFO: [Synth 8-638] synthesizing module 'xadc_wiz_0'

[Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1/.Xil/Vivado-4496-evo/realtime/xadc_wiz_0

_stub.vhdl:27]

INFO: [Synth 8-3491] module 'pitchshift' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/pitchshift.vhd:27' bound

to instance 'pitch_shift' of component 'pitchshift'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:226]

INFO: [Synth 8-638] synthesizing module 'pitchshift'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/pitchshift.vhd:38]

INFO: [Synth 8-256] done synthesizing module 'pitchshift' (1#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/pitchshift.vhd:38]

INFO: [Synth 8-3491] module 'i2s_clock_generator' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_clock_generator.vhd:47

' bound to instance 'generate_clock' of component 'i2s_clock_generator'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:239]

INFO: [Synth 8-638] synthesizing module 'i2s_clock_generator'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_clock_generator.vhd:59

]

INFO: [Synth 8-256] done synthesizing module 'i2s_clock_generator' (2#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_clock_generator.vhd:59

]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 70 of 84

INFO: [Synth 8-3491] module 'envelope' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:32' bound to

instance 'envelope_grain' of component 'envelope'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:254]

INFO: [Synth 8-638] synthesizing module 'envelope'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:50]

WARNING: [Synth 8-614] signal 'BYPASS' is read in the process but is not in the sensitivity

list [Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:58]

WARNING: [Synth 8-614] signal 'audio_in' is read in the process but is not in the

sensitivity list

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:58]

WARNING: [Synth 8-6014] Unused sequential element temp_audio_reg was removed.

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:78]

INFO: [Synth 8-256] done synthesizing module 'envelope' (3#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:50]

INFO: [Synth 8-3491] module 'density' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:28' bound to

instance 'grain_density' of component 'density'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:275]

INFO: [Synth 8-638] synthesizing module 'density'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:43]

WARNING: [Synth 8-614] signal 'RND' is read in the process but is not in the sensitivity

list [Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:47]

WARNING: [Synth 8-614] signal 'async_en' is read in the process but is not in the

sensitivity list

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:47]

WARNING: [Synth 8-614] signal 'async' is read in the process but is not in the sensitivity

list [Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:47]

WARNING: [Synth 8-614] signal 'create' is read in the process but is not in the sensitivity

list [Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:47]

WARNING: [Synth 8-614] signal 'variance' is read in the process but is not in the

sensitivity list

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:47]

INFO: [Synth 8-256] done synthesizing module 'density' (4#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/density.vhd:43]

INFO: [Synth 8-3491] module 'rand' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/rnd.vhd:25' bound to

instance 'random12bit' of component 'rand'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:287]

INFO: [Synth 8-638] synthesizing module 'rand'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/rnd.vhd:32]

INFO: [Synth 8-256] done synthesizing module 'rand' (5#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/rnd.vhd:32]

INFO: [Synth 8-3491] module 'i2s_transmitter' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_transmitter.vhd:33'

bound to instance 'i_i2s_transmitter' of component 'i2s_transmitter'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:295]

INFO: [Synth 8-638] synthesizing module 'i2s_transmitter'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_transmitter.vhd:42]

INFO: [Synth 8-256] done synthesizing module 'i2s_transmitter' (6#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/i2s_transmitter.vhd:42]

INFO: [Synth 8-3491] module 'powerup_controller' declared at

'Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/powerup_controller.vhd:31'

bound to instance 'i_powerup_controller' of component 'powerup_controller'

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 71 of 84

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:303]

INFO: [Synth 8-638] synthesizing module 'powerup_controller'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/powerup_controller.vhd:36]

INFO: [Synth 8-256] done synthesizing module 'powerup_controller' (7#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/powerup_controller.vhd:36]

Parameter DDR_CLK_EDGE bound to: OPPOSITE_EDGE - type: string

Parameter INIT bound to: 1'b0

Parameter IS_C_INVERTED bound to: 1'b0

Parameter IS_D1_INVERTED bound to: 1'b0

Parameter IS_D2_INVERTED bound to: 1'b0

Parameter SRTYPE bound to: SYNC - type: string

INFO: [Synth 8-113] binding component instance 'mclk_ODDR' to cell 'ODDR'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:313]

INFO: [Synth 8-256] done synthesizing module 'SILO' (8#1)

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/silo.vhd:74]

WARNING: [Synth 8-3331] design density has unconnected port finished

Finished RTL Elaboration : Time (s): cpu = 00:00:06 ; elapsed = 00:00:06 . Memory (MB):

peak = 439.270 ; gain = 155.918

Report Check Netlist:

+------+------------------+-------+---------+-------+------------------+

| |Item |Errors |Warnings |Status |Description |

+------+------------------+-------+---------+-------+------------------+

|1 |multi_driven_nets | 0| 0|Passed |Multi driven nets |

+------+------------------+-------+---------+-------+------------------+

Start Handling Custom Attributes

Finished Handling Custom Attributes : Time (s): cpu = 00:00:06 ; elapsed = 00:00:07 .

Memory (MB): peak = 439.270 ; gain = 155.918

Finished RTL Optimization Phase 1 : Time (s): cpu = 00:00:06 ; elapsed = 00:00:07 . Memory

(MB): peak = 439.270 ; gain = 155.918

INFO: [Netlist 29-17] Analyzing 1 Unisim elements for replacement

INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds

INFO: [Device 21-403] Loading part xc7s50csga324-1

INFO: [Project 1-570] Preparing netlist for logic optimization

Processing XDC Constraints

Initializing timing engine

Parsing XDC File

[q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/ip/xadc_wiz_0/xadc_wiz_0/xadc_wiz_0_in

_context.xdc] for cell 'readxadc'

Finished Parsing XDC File

[q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/ip/xadc_wiz_0/xadc_wiz_0/xadc_wiz_0_in

_context.xdc] for cell 'readxadc'

Parsing XDC File

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/constrs_1/imports/constraints/Arty-S7-50-Master.

xdc]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 72 of 84

Finished Parsing XDC File

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/constrs_1/imports/constraints/Arty-S7-50-Master.

xdc]

INFO: [Project 1-236] Implementation specific constraints were found while reading

constraint file

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/constrs_1/imports/constraints/Arty-S7-50-Master.

xdc]. These constraints will be ignored for synthesis but will be used in implementation.

Impacted constraints are listed in the file [.Xil/SILO_propImpl.xdc].

Resolution: To avoid this warning, move constraints listed in [.Xil/SILO_propImpl.xdc] to

another XDC file and exclude this new file from synthesis with the used_in_synthesis

property (File Properties dialog in GUI) and re-run elaboration/synthesis.

Completed Processing XDC Constraints

INFO: [Project 1-111] Unisim Transformation Summary:

No Unisim elements were transformed.

Constraint Validation Runtime : Time (s): cpu = 00:00:00 ; elapsed = 00:00:00.013 . Memory

(MB): peak = 762.789 ; gain = 0.000

Finished Constraint Validation : Time (s): cpu = 00:00:17 ; elapsed = 00:00:21 . Memory

(MB): peak = 762.789 ; gain = 479.438

Start Loading Part and Timing Information

Loading part: xc7s50csga324-1

Finished Loading Part and Timing Information : Time (s): cpu = 00:00:17 ; elapsed =

00:00:21 . Memory (MB): peak = 762.789 ; gain = 479.438

Start Applying 'set_property' XDC Constraints

Applied set_property DONT_TOUCH = true for readxadc. (constraint file auto generated

constraint, line).

Finished applying 'set_property' XDC Constraints : Time (s): cpu = 00:00:17 ; elapsed =

00:00:21 . Memory (MB): peak = 762.789 ; gain = 479.438

WARNING: [Synth 8-6014] Unused sequential element out_pointer_reg_rep was removed.

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/pitchshift.vhd:65]

Finished RTL Optimization Phase 2 : Time (s): cpu = 00:00:18 ; elapsed = 00:00:22 . Memory

(MB): peak = 762.789 ; gain = 479.438

Report RTL Partitions:

+-+--------------+------------+----------+

| |RTL Partition |Replication |Instances |

+-+--------------+------------+----------+

+-+--------------+------------+----------+

Start RTL Component Statistics

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 73 of 84

Detailed RTL Component Info :

+---Adders :

2 Input 16 Bit Adders := 1

3 Input 16 Bit Adders := 2

2 Input 13 Bit Adders := 1

2 Input 10 Bit Adders := 2

2 Input 9 Bit Adders := 1

2 Input 6 Bit Adders := 3

+---XORs :

2 Input 1 Bit XORs := 13

+---Registers :

32 Bit Registers := 1

16 Bit Registers := 4

10 Bit Registers := 1

6 Bit Registers := 2

4 Bit Registers := 1

1 Bit Registers := 39

+---Multipliers :

16x32 Multipliers := 2

+---RAMs :

37K Bit RAMs := 1

+---Muxes :

2 Input 32 Bit Muxes := 1

2 Input 16 Bit Muxes := 7

2 Input 10 Bit Muxes := 2

2 Input 1 Bit Muxes := 6

Finished RTL Component Statistics

Start RTL Hierarchical Component Statistics

Hierarchical RTL Component report

Module pitchshift

Detailed RTL Component Info :

+---Adders :

2 Input 13 Bit Adders := 1

+---Registers :

16 Bit Registers := 1

4 Bit Registers := 1

+---RAMs :

37K Bit RAMs := 1

Module i2s_clock_generator

Detailed RTL Component Info :

+---Adders :

2 Input 6 Bit Adders := 3

+---Registers :

6 Bit Registers := 2

+---Muxes :

2 Input 1 Bit Muxes := 4

Module envelope

Detailed RTL Component Info :

+---Adders :

2 Input 16 Bit Adders := 1

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 74 of 84

3 Input 16 Bit Adders := 2

+---Registers :

16 Bit Registers := 3

1 Bit Registers := 1

+---Multipliers :

16x32 Multipliers := 2

+---Muxes :

2 Input 16 Bit Muxes := 7

2 Input 1 Bit Muxes := 1

Module density

Detailed RTL Component Info :

+---Adders :

2 Input 10 Bit Adders := 1

2 Input 9 Bit Adders := 1

+---Muxes :

2 Input 10 Bit Muxes := 2

Module rand

Detailed RTL Component Info :

+---XORs :

2 Input 1 Bit XORs := 13

+---Registers :

1 Bit Registers := 35

Module i2s_transmitter

Detailed RTL Component Info :

+---Registers :

32 Bit Registers := 1

1 Bit Registers := 3

+---Muxes :

2 Input 32 Bit Muxes := 1

2 Input 1 Bit Muxes := 1

Module powerup_controller

Detailed RTL Component Info :

+---Adders :

2 Input 10 Bit Adders := 1

+---Registers :

10 Bit Registers := 1

Finished RTL Hierarchical Component Statistics

Start Part Resource Summary

Part Resources:

DSPs: 120 (col length:60)

BRAMs: 150 (col length: RAMB18 60 RAMB36 30)

Finished Part Resource Summary

Start Cross Boundary and Area Optimization

Warning: Parallel synthesis criteria is not met

INFO: [Synth 8-4471] merging register 'counter_reg[15:0]' into 'counter_reg[15:0]'

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:80]

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 75 of 84

WARNING: [Synth 8-6014] Unused sequential element counter_reg was removed.

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:80]

INFO: [Synth 8-5845] Not enough pipeline registers after wide multiplier. Recommended

levels of pipeline registers is 2

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:81]

INFO: [Synth 8-5845] Not enough pipeline registers after wide multiplier. Recommended

levels of pipeline registers is 2

[Q:/Xilinx/work/grain_silo/grain_silo.srcs/sources_1/imports/new/envelope.vhd:85]

DSP Report: Generating DSP temp_audio1, operation Mode is: A*B.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: Generating DSP temp_audio3, operation Mode is: A*B2.

DSP Report: register counter_reg is absorbed into DSP temp_audio3.

DSP Report: operator temp_audio3 is absorbed into DSP temp_audio3.

DSP Report: Generating DSP temp_audio1, operation Mode is: A*B.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: Generating DSP temp_audio1, operation Mode is: (PCIN>>17)+A*B.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: Generating DSP temp_audio3, operation Mode is: A*B.

DSP Report: operator temp_audio3 is absorbed into DSP temp_audio3.

DSP Report: Generating DSP temp_audio1, operation Mode is: A*B.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: Generating DSP temp_audio1, operation Mode is: (PCIN>>17)+A*B.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

DSP Report: operator temp_audio1 is absorbed into DSP temp_audio1.

INFO: [Synth 8-4652] Swapped enable and write-enable on 2 RAM instances of RAM

pitch_shift/memory_reg to conserve power

INFO: [Synth 8-3886] merging instance 'envelope_grain/iot_reg[0]' (FDE) to

'envelope_grain/iot_reg[15]'

INFO: [Synth 8-3886] merging instance 'envelope_grain/iot_reg[13]' (FDE) to

'envelope_grain/iot_reg[15]'

INFO: [Synth 8-3886] merging instance 'envelope_grain/iot_reg[14]' (FDE) to

'envelope_grain/iot_reg[15]'

INFO: [Synth 8-3333] propagating constant 0 across sequential element

(envelope_grain/\iot_reg[15])

WARNING: [Synth 8-3332] Sequential element (iot_reg[15]) is unused and will be removed from

module envelope.

Finished Cross Boundary and Area Optimization : Time (s): cpu = 00:00:25 ; elapsed =

00:00:29 . Memory (MB): peak = 762.789 ; gain = 479.438

Start ROM, RAM, DSP and Shift Register Reporting

Block RAM: Preliminary Mapping Report (see note below)

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

|Module Name | RTL Object | PORT A (Depth x Width) | W | R | PORT B (Depth x Width) | W | R

| Ports driving FF | RAMB18 | RAMB36 |

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 76 of 84

|pitchshift: | memory_reg | 4 K x 16(NO_CHANGE) | W | | 4 K x 16(WRITE_FIRST) | | R

| Port A and B | 0 | 2 |

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

Note: The tale above is a preliminary report that shows the Block RAMs at the current stage

of the synthesis flow. Some Block RAMs may be reimplemented as non Block RAM primitives

later in the synthesis flow. Multiple instantiated Block RAMs are reported only once.

DSP: Preliminary Mapping Report (see note below)

+------------+----------------+--------+--------+--------+--------+--------+------+------+-

-----+------+-------+------+------+

|Module Name | DSP Mapping | A Size | B Size | C Size | D Size | P Size | AREG | BREG |

CREG | DREG | ADREG | MREG | PREG |

+------------+----------------+--------+--------+--------+--------+--------+------+------+-

-----+------+-------+------+------+

|envelope | A*B | 16 | 16 | - | - | 32 | 0 | 0 | - | -

| - | 0 | 0 |

|envelope | A*B2 | 16 | 16 | - | - | 32 | 0 | 1 | - | -

| - | 0 | 0 |

|envelope | A*B | 18 | 17 | - | - | 48 | 0 | 0 | - | -

| - | 0 | 0 |

|envelope | (PCIN>>17)+A*B | 17 | 16 | - | - | 48 | 0 | 0 | -

| - | - | 0 | 0 |

|envelope | A*B | 16 | 16 | - | - | 32 | 0 | 0 | - | -

| - | 0 | 0 |

|envelope | A*B | 18 | 17 | - | - | 48 | 0 | 0 | - | -

| - | 0 | 0 |

|envelope | (PCIN>>17)+A*B | 17 | 16 | - | - | 48 | 0 | 0 | -

| - | - | 0 | 0 |

+------------+----------------+--------+--------+--------+--------+--------+------+------+-

-----+------+-------+------+------+

Note: The table above is a preliminary report that shows the DSPs inferred at the current

stage of the synthesis flow. Some DSP may be rei-mplemented as non DSP primitives later in

the synthesis flow. Multiple instantiated DSPs are reported only once.

Finished ROM, RAM, DSP and Shift Register Reporting

INFO: [Synth 8-4480] The timing for the instance i_0/pitch_shift/memory_reg_0 (implemented

as a block RAM) might be sub-optimal as no optional output register could be merged into

the block ram. Providing additional output register may help in improving timing.

INFO: [Synth 8-4480] The timing for the instance i_0/pitch_shift/memory_reg_1 (implemented

as a block RAM) might be sub-optimal as no optional output register could be merged into

the block ram. Providing additional output register may help in improving timing.

Report RTL Partitions:

+-+--------------+------------+----------+

| |RTL Partition |Replication |Instances |

+-+--------------+------------+----------+

+-+--------------+------------+----------+

Start Applying XDC Timing Constraints

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 77 of 84

Finished Applying XDC Timing Constraints : Time (s): cpu = 00:00:45 ; elapsed = 00:00:51 .

Memory (MB): peak = 812.496 ; gain = 529.145

Start Timing Optimization

Finished Timing Optimization : Time (s): cpu = 00:00:46 ; elapsed = 00:00:52 . Memory (MB):

peak = 825.695 ; gain = 542.344

Start ROM, RAM, DSP and Shift Register Reporting

Block RAM: Final Mapping Report

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

|Module Name | RTL Object | PORT A (Depth x Width) | W | R | PORT B (Depth x Width) | W | R

| Ports driving FF | RAMB18 | RAMB36 |

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

|pitchshift: | memory_reg | 4 K x 16(NO_CHANGE) | W | | 4 K x 16(WRITE_FIRST) | | R

| Port A and B | 0 | 2 |

+------------+------------+------------------------+---+---+------------------------+---+--

-+------------------+--------+--------+

Finished ROM, RAM, DSP and Shift Register Reporting

Report RTL Partitions:

+-+--------------+------------+----------+

| |RTL Partition |Replication |Instances |

+-+--------------+------------+----------+

+-+--------------+------------+----------+

Start Technology Mapping

INFO: [Synth 8-4480] The timing for the instance pitch_shift/memory_reg_0 (implemented as a

block RAM) might be sub-optimal as no optional output register could be merged into the

block ram. Providing additional output register may help in improving timing.

INFO: [Synth 8-4480] The timing for the instance pitch_shift/memory_reg_1 (implemented as a

block RAM) might be sub-optimal as no optional output register could be merged into the

block ram. Providing additional output register may help in improving timing.

Finished Technology Mapping : Time (s): cpu = 00:00:48 ; elapsed = 00:00:55 . Memory (MB):

peak = 853.461 ; gain = 570.109

Report RTL Partitions:

+-+--------------+------------+----------+

| |RTL Partition |Replication |Instances |

+-+--------------+------------+----------+

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 78 of 84

+-+--------------+------------+----------+

Start IO Insertion

Start Flattening Before IO Insertion

Finished Flattening Before IO Insertion

Start Final Netlist Cleanup

Finished Final Netlist Cleanup

Finished IO Insertion : Time (s): cpu = 00:00:50 ; elapsed = 00:00:56 . Memory (MB): peak =

853.461 ; gain = 570.109

Report Check Netlist:

+------+------------------+-------+---------+-------+------------------+

| |Item |Errors |Warnings |Status |Description |

+------+------------------+-------+---------+-------+------------------+

|1 |multi_driven_nets | 0| 0|Passed |Multi driven nets |

+------+------------------+-------+---------+-------+------------------+

Start Renaming Generated Instances

Finished Renaming Generated Instances : Time (s): cpu = 00:00:50 ; elapsed = 00:00:57 .

Memory (MB): peak = 853.461 ; gain = 570.109

Report RTL Partitions:

+-+--------------+------------+----------+

| |RTL Partition |Replication |Instances |

+-+--------------+------------+----------+

+-+--------------+------------+----------+

Start Rebuilding User Hierarchy

Finished Rebuilding User Hierarchy : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 . Memory

(MB): peak = 853.461 ; gain = 570.109

Start Renaming Generated Ports

Finished Renaming Generated Ports : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 . Memory

(MB): peak = 853.461 ; gain = 570.109

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 79 of 84

Start Handling Custom Attributes

Finished Handling Custom Attributes : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 .

Memory (MB): peak = 853.461 ; gain = 570.109

Start Renaming Generated Nets

Finished Renaming Generated Nets : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 . Memory

(MB): peak = 853.461 ; gain = 570.109

Start ROM, RAM, DSP and Shift Register Reporting

Static Shift Register Report:

+------------+---------------------+--------+-------+--------------+--------------------+--

-----------------+--------+---------+

|Module Name | RTL Name | Length | Width | Reset Signal | Pull out first Reg |

Pull out last Reg | SRL16E | SRLC32E |

+------------+---------------------+--------+-------+--------------+--------------------+--

-----------------+--------+---------+

|SILO | random12bit/x28_reg | 5 | 1 | NO | NO |

YES | 1 | 0 |

|SILO | random12bit/x32_reg | 3 | 1 | NO | NO |

YES | 1 | 0 |

+------------+---------------------+--------+-------+--------------+--------------------+--

-----------------+--------+---------+

Finished ROM, RAM, DSP and Shift Register Reporting

Start Writing Synthesis Report

Report BlackBoxes:

+------+--------------+----------+

| |BlackBox name |Instances |

+------+--------------+----------+

|1 |xadc_wiz_0 | 1|

+------+--------------+----------+

Report Cell Usage:

+------+------------------+------+

| |Cell |Count |

+------+------------------+------+

|1 |xadc_wiz_0_bbox_0 | 1|

|2 |BUFG | 3|

|3 |CARRY4 | 616|

|4 |DSP48E1 | 6|

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 80 of 84

|5 |DSP48E1_1 | 1|

|6 |LUT1 | 94|

|7 |LUT2 | 1157|

|8 |LUT3 | 368|

|9 |LUT4 | 663|

|10 |LUT5 | 252|

|11 |LUT6 | 166|

|12 |ODDR | 1|

|13 |RAMB36E1 | 2|

|14 |SRL16E | 2|

|15 |FDCE | 16|

|16 |FDPE | 16|

|17 |FDRE | 173|

|18 |LDC | 16|

|19 |IBUF | 11|

|20 |OBUF | 9|

+------+------------------+------+

Report Instance Areas:

+------+-----------------------+--------------------+------+

| |Instance |Module |Cells |

+------+-----------------------+--------------------+------+

|1 |top | | 3598|

|2 | grain_density |density | 20|

|3 | envelope_grain |envelope | 3141|

|4 | generate_clock |i2s_clock_generator | 28|

|5 | i_i2s_transmitter |i2s_transmitter | 36|

|6 | i_powerup_controller |powerup_controller | 22|

|7 | pitch_shift |pitchshift | 95|

|8 | random12bit |rand | 78|

+------+-----------------------+--------------------+------+

Finished Writing Synthesis Report : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 . Memory

(MB): peak = 853.461 ; gain = 570.109

Synthesis finished with 0 errors, 0 critical warnings and 3 warnings.

Synthesis Optimization Runtime : Time (s): cpu = 00:00:38 ; elapsed = 00:00:47 . Memory

(MB): peak = 853.461 ; gain = 246.590

Synthesis Optimization Complete : Time (s): cpu = 00:00:51 ; elapsed = 00:00:57 . Memory

(MB): peak = 853.461 ; gain = 570.109

INFO: [Project 1-571] Translating synthesized netlist

INFO: [Netlist 29-17] Analyzing 653 Unisim elements for replacement

INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds

WARNING: [Netlist 29-101] Netlist 'SILO' is not ideal for floorplanning, since the cellview

'envelope' contains a large number of primitives. Please consider enabling hierarchy in

synthesis if you want to do floorplanning.

INFO: [Project 1-570] Preparing netlist for logic optimization

INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).

INFO: [Project 1-111] Unisim Transformation Summary:

A total of 16 instances were transformed.

LDC => LDCE: 16 instances

INFO: [Common 17-83] Releasing license: Synthesis

52 Infos, 13 Warnings, 0 Critical Warnings and 0 Errors encountered.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 81 of 84

synth_design completed successfully

synth_design: Time (s): cpu = 00:00:54 ; elapsed = 00:01:01 . Memory (MB): peak = 853.461 ;

gain = 581.582

WARNING: [Constraints 18-5210] No constraint will be written out.

INFO: [Common 17-1381] The checkpoint

'Q:/Xilinx/work/grain_silo/grain_silo.runs/synth_1/SILO.dcp' has been generated.

INFO: [runtcl-4] Executing : report_utilization -file SILO_utilization_synth.rpt -pb

SILO_utilization_synth.pb

report_utilization: Time (s): cpu = 00:00:00 ; elapsed = 00:00:00.107 . Memory (MB): peak =

853.461 ; gain = 0.000

INFO: [Common 17-206] Exiting Vivado at Sun Oct 28 18:07:32 2018...

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 82 of 84

9. References

[1] D. Gabor, “Theory of communication,” Journal of the Institution of Electrical
Engineers - Part I: General, vol. 94, no. 73, pp. 58–58, 1947.

[2] I. Xenakis, Formalized music: thought and mathematics in composition. Bloomington:
Indiana University Press, 1971.

[3] C. Roads, “Automated Granular Synthesis of Sound,” Computer Music Journal, vol. 2,
no. 2, p. 61, 1978.

[4] B. Truax, “Discovering inner complexity: Time shifting and transposition with a
real-time granulation technique”. Computer Music Journal, 18(2), 38-48, 1994.

[5] J.-C. Risset, “Musical sound models for digital synthesis,” in ICASSP ’86. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1986.

[6] M. Goodwin and M. Vetterli, “Atomic decompositions of audio signals,” in
Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and
Acoustics.

[7] Min-Ho Hyun, M.-H. Hyun, J.-H. Na, and S.-Y. Hwang, “Design of a pipelined music
synthesizer based on the wavetable method,” IEEE Trans. Consum. Electron., vol. 43,
no. 3, pp. 605–613, 1997.

[8] R. Fischman, “Microstructure and macrostructure,” Organised Sound, vol. 3, no. 1, pp.
1–2, 1998.

[9] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman, “Synthesizing
sound textures through wavelet tree learning,” IEEE Comput. Graph. Appl., vol. 22, no.
4, pp. 38–48, 2002.

[10] T. Opie, “Creation of a Real-Time Granular Synthesis Instrument for Live
Performance”. Masters Thesis. Brisbane, Australia. QUT”, 2003.

[11] R. Fischman, “Clouds, Pyramids, and Diamonds: Applying Schrödinger’s Equation to
Granular Synthesis and Compositional Structure,” Computer Music Journal, vol. 27,
no. 2, pp. 47–69, 2003.

[12] C. Roads, Microsound. MIT Press, 2004.
[13] I. Song, G. Governatori, and L. Diederich, “Automatic synthesis of reactive agents,” in

2010 11th International Conference on Control Automation Robotics & Vision, 2010.
[14] A. Haveliya, “Design and Simulation of 32-Point FFT Using Radix-2 Algorithm for

FPGA Implementation,” in 2012 Second International Conference on Advanced
Computing & Communication Technologies, 2012.

[15] S. Aisyah, “FPGA-based sound synthesis by digital waveguide,” in 2015 6th
International Conference on Modeling, Simulation, and Applied Optimization
(ICMSAO), 2015.

[16] S. O’Leary and A. Robel, “A Montage Approach to Sound Texture Synthesis,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 6,
pp. 1094–1105, 2016.

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 83 of 84

http://paperpile.com/b/rbIzmB/eTtc
http://paperpile.com/b/rbIzmB/eTtc
http://paperpile.com/b/rbIzmB/kXhK
http://paperpile.com/b/rbIzmB/kXhK
http://paperpile.com/b/rbIzmB/FPd6
http://paperpile.com/b/rbIzmB/FPd6
http://paperpile.com/b/rbIzmB/rwi5
http://paperpile.com/b/rbIzmB/rwi5
http://paperpile.com/b/rbIzmB/rwi5
http://paperpile.com/b/rbIzmB/qeLx
http://paperpile.com/b/rbIzmB/qeLx
http://paperpile.com/b/rbIzmB/qeLx
http://paperpile.com/b/rbIzmB/6Tvk
http://paperpile.com/b/rbIzmB/6Tvk
http://paperpile.com/b/rbIzmB/LZK3
http://paperpile.com/b/rbIzmB/LZK3
http://paperpile.com/b/rbIzmB/LZK3
http://paperpile.com/b/rbIzmB/wY2i
http://paperpile.com/b/rbIzmB/wY2i
http://paperpile.com/b/rbIzmB/wY2i
http://paperpile.com/b/rbIzmB/RYOI
http://paperpile.com/b/rbIzmB/2h8s
http://paperpile.com/b/rbIzmB/2h8s
http://paperpile.com/b/rbIzmB/gs18
http://paperpile.com/b/rbIzmB/gs18
http://paperpile.com/b/rbIzmB/gs18
http://paperpile.com/b/rbIzmB/mULa
http://paperpile.com/b/rbIzmB/mULa
http://paperpile.com/b/rbIzmB/mULa
http://paperpile.com/b/rbIzmB/btMl
http://paperpile.com/b/rbIzmB/btMl
http://paperpile.com/b/rbIzmB/btMl

[17] Doulos, “The VHDL Golden Reference Guide”,
http://www.ics.uci.edu/~jmoorkan/vhdlref, Doulos; 2nd edition edition, 1997.

[18] P. J. Ashenden, “The VHDL Cookbook, First Edition”, http://esd.cs.ucr.edu/vhdlcook,
Ashenden, 1998.

[19] Yalamanchili, “VHDL: A Starter's Guide, 2nd Edition”,
http://sudha-curr.ece.gatech.edu/vhdl-starters-guide, Prentice Hall; 2 edition, 2005.

[20] B. Mealy and F Tappero, “Free Range VHDL: The No-frills Guide to Writing Powerful
Code for Your Digital Implementations”, https://archive.org/details/free_range_vhdl,
Free Range Factory, 2013.

[21] Make Noise Company, “The Phonogene”,
http://www.makenoisemusic.com/modules/phonogene
[22] Mutable Instruments, “Clouds”, https://mutable-instruments.net/modules/clouds,
Accessed 07/04/2018, published 2014.

[23] B. Truax, Personal communication via email, 2004.
[24] C. Roads, CloudGenerator, http://clang.mat.ucsb.edu/software.html, accessed

19/05/2018. Published in 1995.
[25] P. Smaragdis and J. ffitch, grain.c,

https://github.com/csound/csound/blob/develop/Opcodes/grain.c, accessed 19/05/2018,
published in 1994.

[26] N. Collins, “Review of Radiohead Kid A/Amnesiac/Hail to the Thief.” in Computer
Music Journal, Vol 28(1): 73-77, 2004.

[27] J. Groh, “An efficient, Precise Frequency Shifter”, in Csound Magazine, 2006.
[28] H.S. Carslaw, Introduction to the Theory of Fourier's Series and Integrals, 3rd ed., rev.

and enl. New York: Dover, 1921.
[29] J. Arndt, Matters Computational. https://archive.org/details/fxtbook, accessed

19/05/2018, published in 2010.
[30] Xilinx, Digilent Arty S7-50: Spartan-7 FPGA.

https://www.xilinx.com/products/boards-and-kits/1-pnziih.html, accessed 10/03/2018,
published in 2017.

[31] Tasty Chips Electronics
http://cdm.link/2017/08/granular-lovers-get-kickstarter-funded-hardware-synth,
accessed 24/10/2018

[32] S. Bernsee, Pitch Shifting Using the Fourier Transform, 1999.
http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft

[33] J. Clark and R. Hordijk, “Chapter 13. Frequency and Pitch Shifting”, from A Primer on
Advanced Synthesis Techniques.

https://www.cim.mcgill.ca/~clark/nordmodularbook/nm_spectrum_shift.html

Timothy Opie : Student Number:101046047 - EEE40012 - Research Report Page 84 of 84

http://esd.cs.ucr.edu/vhdlcook
https://archive.org/details/free_range_vhdl
http://www.makenoisemusic.com/modules/phonogene
https://mutable-instruments.net/modules/clouds
http://clang.mat.ucsb.edu/software.html
https://github.com/csound/csound/blob/develop/Opcodes/grain.c
https://archive.org/details/fxtbook
https://www.xilinx.com/products/boards-and-kits/1-pnziih.html
http://cdm.link/2017/08/granular-lovers-get-kickstarter-funded-hardware-synth
http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft
https://www.cim.mcgill.ca/~clark/nordmodularbook/nm_spectrum_shift.html

